CS 14 Spring 2002 - Mid-term \#1

This is a closed book, closed note exam. Answer all of the questions clearly, completely, and concisely. You have 50 minutes, so be sure to budget your time. All work should be written in your blue book.

1. (15 points) Use a Karnaugh map to simplify the boolean function described by the truth table below. Draw your rectangles clearly and express your result as a boolean algebraic equation - do not draw a circuit.

2. (15 points) Show that the NOR operator is sufficient to express any combinational logic formula. That is, show that NOR can be used to compute NOT, OR, and AND operators. Present a circuit for each operator, labeling its inputs and outputs clearly.
3. Provide brief answers to the following questions about MIPS. (You answers should not be more than a paragraph.)
(a) (5 points) Consider the use of a branching instruction where the branch target (that is, the location to which the instruction may jump) is to an earlier instruction. How is this "backwards jump" represented in the machine instruction?
(b) (5 points) The li instruction is a pseudoinstruction. How is this instruction handled given that the instruction isn't "real"? Why does it not exist as a real instruction?
(c) (5 points) What if the jal instruction were removed from the MIPS instruction set. Would procedure calls still be possible? Justify your answer.
4. (15 points) A demultiplexor is complementary to a multiplexor. It has one input, and chooses to connect that input to one of n outputs. (Output lines that are not currently being selected emit a 0 .) Draw a circuit for a demultiplexor with a 1 -bit input and 41 -bit outputs.
5. (20 points) Assume that you have an EEPROM (that is, a ROM whose contents you can set) that has 8 addressable locations, where each location stores 2 bits. Demonstrate how this EEPROM can be used to implement the following two combinational formulas:

$$
\begin{aligned}
& \mathrm{Y}=\overline{\mathrm{ABC}}+\overline{\mathrm{ABC}}+\overline{\mathrm{ABC}} \\
& \mathrm{Z}=\overline{\mathrm{ABC}}+\overline{\mathrm{ABC}}+\mathrm{AB}
\end{aligned}
$$

6. (20 points) Construct a sequential circuit that cycles repeatedly through the following 3 element pattern with 2 bits per element: $10,11,10, \ldots$
