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Abstract 

As disk performance continues to lag behind that of mem- 
ory systems and processors, virtual memory management 
becomes increasingly important for overall system perfor- 
mance. In this paper we study the page reference behavior of 
a collection of memory-intensive applications, and propose 
a new virtual memory page replacement algorithm, SEQ. 
SEQ detects long sequences of page faults and applies most- 
recently-used replacement to those sequences. Simulations 
show that for a large class of applications, SEQ performs 
close to the optimal replacement algorithm, and significantly 
better than Least-Recently-Used (LRU). In addition, SEQ 
performs similarly to LRU for applications that do not ex- 
hibit sequential faulting. 

1 Introduction 

As the performance gap between memory systems and disks 
increases, the impact of memory management on system 
performance increases. Although buying more memory would 
always alleviate the poor performance of current virtual 
memory (VM) systems, operating system designers should 
attempt to improve VM design and policies so that users re- 
ceive the best attainable performance, regardless of system 
configuration and budget. 

In this study we collected sixteen memory-intensive ap- 
plications and studied their page reference behavior. Seven 
applications are from the SPEC95 suite; the rest are “big- 
memory” applications including integer-intensive programs 
(e.g. databases) and scientific computations. We found that 
the applications have very difference page reference patterns: 
some are truly memory intensive, referencing many pages in 
short time intervals, while ot,hers have clear reference pat- 
terns that can be exploited for better replacement decisions. 

We simulated the Least-Recently Used (LRU) page re- 
placement algorithm and the optimal offline algorithm (Be- 
lady’s OPT algorithm [2]) for these applications under vary- 
ing main memory sizes. For the applications that has no vis- 
ible, large-scale access patterns, both LRU and OPT show 
gradual, continuous reduction in page fault rate as mem- 
ory size increases. LRU appears to be a good replacement 
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policy for such programs. For applications that have clear 
access patterns, however, LRU often performs poorly: it fre- 
quently exhibits plateau behavior, where increasing memory 
sizes does not reduce fault rate until the whole program fits 
into memory. For these programs OPT obtains at least lin- 
ear reduction in fault rate as memory size increases. 

Based on LRU’s observed poor behavior, we propose a 
new replacement algorithm, SEQ. SEQ normally performs 
LRU replacement; in addition, it monitors page faults as 
they occur, detecting long sequences of faults to contiguous 
virtual addresses. When such sequences are found, SEQ per- 
forms a pseudo most-recently-used (MRU) replacement on 
the sequences, attempting to imitate what OPT would do. 
SEQ often corrects the poor performance (plateau behavior) 
of LRU for applications that have sequential behavior, yet 
it performs the same as LRU for other types of applications. 

We also conducted a preliminary study of two global page 
replacement algorithms: global LRU replacement, and SEQ 
extended to be a global replacement algorithm. We found 
that SEQ performs similar to or better than global LRU on 
mixes of various application types. Our results suggest that 
SEQ may be a good algorithm suitable for implementation 
in a real OS kernel VM system. 

2 Applications and Traces 

The applications we studied are described in Table 1. Shown 
for each program is the number of instructions executed by 
the traced program and the amount of total memory used by 
the program. (Other columns in the table will be described 
further below.) 

2.1 Trace Methodology 

We collected memory reference traces using Shade [S], 
an instruction-level trace generator for the SPARC archi- 
tecture. All programs ran on machines running the So- 
laris 2.4 operating system. Because of the length of our 
traces, recording all memory references individually would 
result in unmanageably large trace files. Instead, we record 
“IN” and “OUT” records. We divide program instruction 
time into fixed-length intervals (usually l,OOO,OOO instruc- 
tions). At the end of every interval, for every page that was 
referenced in the current interval but was not referenced in 
the previous interval, an IN record is generated and time- 
stamped with the actual time (in terms of instructions exe- 
cuted) of the first reference to that page. Similarly, for every 
page that was accessed in the previous interval but was not 
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/I Program ] Description Length 1 Memory / Executable / Min. simulatable /I 
(millions of used size (KB) memory size (KB 

Y instructions) WB) LRU 1 VI I 

wplu Solve 5 coupled parabolic/elliptic PDEs 1068 14524 136 2432 I 972 n 
blizzard Binary rewriting tool for software 1 DSM 1 2122 ] 15632 1 1153 1 5332 ] 4772 
coral* Deductive database evalua ting query 4327 20284 940 7084 6780 -. ] 1 1 1 I 
es* microstructure electrostatics 71003 I 104488 1 56 t 696 1 316 H 
fgm* finite growth model 35210 1 121508 1 112 1 10052 

1371 I 
1 71RFY 

SC Optimizing C compiler 39% I ---- 1.599 I lwm I ---- , --“- , --G-H 
gnuplot PostScril pt-graph generation 4940 62516 602 1552 476 

i.ipeg ] image conversion into JPEG format 42951 8260 152 1112 748 
m88ksim* 1 , I Xcroprocessor cycle-level simulator 10020 19352 165 1964 328 
murohi ] Protocol verifier 1019 9380 2.38 2132 

b I I I I ---- / 1472 
perl* Interpreted scrintins laneuase 1” Y” I 18980 1 I 39344 I I 569 1 I 9636 

---- 
1 1 8428 - _-- 

swim Shallow wi ster simulation I 438 1 I 15016 1 I 56 1 6932 1 I ~~~~ I 6216 

trvetsl Tridiazonal matrix calculation 377 I 69688 1 26 1 2444 I 14130 L *u 

turb3d Turbulence simulation 17989 26052 71 7720 6360 
vortex Main memory database 2507 9676 600 3024 2028 
wave5 Plasma simulation 3774 28700 511 3652 1708 

Table 1: Benchmark programs measured, with execution duration and memory address space size. * Indicates runs which 
were terminated before they completed. Also shown are minimum simulatable memory sizes (discussed in section 2.1) and 
the size of the program binary. 

accessed in the current interval, an OUT record is gener- 
ated with the timestamp of the instruction making the last 
reference to the page. IN and OUT records in a trace are 
written out sorted by their timestamps. We used a uniform 
page size of 4KB throughout this study. 

The IN and OUT records associated with a page mark 
the beginning and end of a period when the page is ref- 
erenced. The page is accessed at least once during each 
interval in this period; exactly how many times and exactly 
when each reference occurs is unknown. However, a page is 
definitely not accessed in the time between an OUT record 
until the next IN record for that page. 

This trace format not only is compact but also allows ac- 
curate simulation of several replacement algorithms for suf- 
ficiently large memory sizes. At any point in a trace, define 
pages that are between an IN record and an OUT record 
as being “ACTIVE”, and the pages that are between an 
OUT record and an IN record as “IDLE”. Then the OPT 
algorithm, which replaces the page that is referenced fur- 
thest in the future, can be simulated by replacing the IDLE 
page whose next IN record is both furthest in the future and 
at least two intervals ahead of the current interval. Such 
a page is indeed the furthest referenced page because any 
ACTIVE page will be accessed again either in the current 
interval or in the next interval. By similar reasoning, LRU 
can be simulated by replacing the IDLE page whose previous 
OUT record is both the earliest among all IDLE pages, and 
whose previous OUT record is either two intervals before the 
current interval, or is before the IN records of all ACTIVE 
pages. These constraints ensure that the page is indeed the 
least-recently-used page (since any ACTIVE page must have 
been accessed in the current interval or in the last interval). 

A limitation of our method is that it can only simulate 
memory sizes above a certain threshold. If the memory size 

is too small, the simulation will not be able to find an IDLE 
page satisfying the above criteria. The minimum simulat- 
able memory sizes for each application are listed in Table 1. 
(For SEQ we used the same minimum as LRU since SEQ 
defaults to LRU replacement.) 

2.2 Application Page Reference Behavior 

We can plot space-time graphs of references from the traces 
described above. For each execution interval (a point on the 
z axis) we plot a point for each page referenced in that in- 
terval The y-axis values are relative page locations within 
the program’s address space (since the application’s address 
space is usually sparse and contains many unused regions, 
we leave out the address space holes and number the used 
pages from low addresses to high addresses on the y-axis). 
Due to space constraints we cannot include all space-time 
graphs. Following pages contain four representative samples 
of the variety of the memory reference behavior for the six- 
teen applications. (Every application’s memory behavior is 
different from the rest. We refer interested readers to [13] 
for all the space-time plots.) 

Observing the space-time graphs, we found that the ap- 
plications fall into three categories. The first, which in- 
cludes coral, murphi, m88ksim and vortex, are truly mem- 
ory intensive-large numbers of pages are accessed during 
each execution interval. There are no clearly visible patterns 
within the vast dark areas. The second category, which in- 
cludes blizzard, gee, and perl, are also memory intensive, 
but have patterns at a small scale (for example, in gee, the 
traversal of pages in the 0.5MB-2.25MB range follows a cer- 
tain pattern). (These kind of small-scale patterns might be 
exploited for techniques such as prefetching, but we have not 
investigated prefetching in this paper.) The third applica- 
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tion category, consisting of the rest of the applications, show 
clearly-exploitable, large-scale reference patterns. Ranges of 
address space are traversed in the same pattern repeatedly. 
The applications seem to be array-based. though some of 
them are written in C (fgm and gnuplot). Some programs 
(ijpeg, applu, and trygtsl) traverse ranges of memory in 
one direction and then change direction, but most programs 
simply go in one direction. The number of sequentially- 
traversed regions also varies, with swim doing about sixteen 
and other programs (es, gnuplot) covering only one large 
region. 

These classes of behavior remind us of the following com- 
ment by Rob Pike: “The following data structures are a 
complete list for almost all practical programs: array, linked 
list, hash table, binary tree.” [24] The statement clearly has 
some truth to it: most applications exhibiting regular ref- 
erence patterns are array-based; vortex, m88ksim, murphi, 
coral, and per1 are apparently either making heavy use of 
hash tables or are traversing tree structures; gee and per1 
(to some extent) seem to use linked lists heavily. From the 
virtual memory system’s point of view, array-based appli- 
cation would be the easiest to handle, while hash tables are 
the hardest. 

2.3 Performance of LRU and OPT 

Figure 1 and 2 show page faults per one million instructions 
executed for each application as its memory spans the range 
from the minimum simulatable size to the total number of 
pages the application uses. 1 The three curves in the graph 
are LRU, OPT, and the new algorithm SEQ that we will 
describe in the next section. We do not include startup 
faults in the figures, because most of these faults are due 
to initialization of processes address space, and are usually 
serviced by zero-filling a page, not by invoking a disk I/O. 
(The number of pages that must be demand-paged from disk 
can be estimated by dividing the “program size” column in 
Table 1 by the 4KB page size.) 

The results show that for the first and second categories 
of applications, which are memory intensive and do not have 
strong patterns, LRU performs similarly to OPT, though 
LRU suffers about twice as many page faults on average. 
For these application classes, the fault rate under LRU drops 
continuously when more memory is available; the rate of im- 
provement is similar to that under OPT. The improvement 
appears to be super-linear for memory sizes less than half of 
the total memory needed by the program (i.e. doubling the 
amount of memory more than halves the number of page 
faults), and the improvement slows down after that point. 

The situation is completely different for the applications 
in the third category (programs with highly regular sequen- 
tial access patterns). LRU performs much poorer than OPT, 
generating up to five to ten times more page faults. LRU fre- 
quently gives no improvement till memory size reaches a cer- 
tain threshold, and results in “staircase” graphs. This gives 
the appearance that the applications have certain working- 
sets that, once in memory, will reduce the fault rate signifi- 

1 We plot page fault rates rather than fault counts because it allows 

us to compare fault rates for different programs more easily. To obtain 

fault counts, simply time the fault rate (at a given memory size) and 

the trace length from table 1. 

cantlv. In fact, OPT is always able to reduce the fault rat,e 

continuously, and LRU simply fails to reduce the fault rat.e 
until it reaches certain memory sizes. 

The problem is that these applications (gnuplot, for ex- 
ample) are looping over large address space ranges; LRU re- 
places pages starting at the beginning of the address range 
(since those are oldest), replacing pages a constant distance 
behind the location where the program is accessing memory. 
When the program begins another iteration at the bottom 
of the range, LRU pages out the top. .411 pages in the range 
must be paged in on every iteration, resulting in the worst 
possible performance. This “LRU flooding” phenomenon is 
the primary motivation for our SEQ algorithm, described in 
the next section. 

Our observations of program memory behavior arrive at 
different conclusions from some early research results, such 
as those described in Denning’s excellent survey [lo]. The 
two biggest differences are that the applications we inves- 
tigated do not generally have significant “phase-transition” 
behavior as their reference patterns tend to be the same 
throughout execution (i.e. no phases). Also, there are no 
identifiable working-sets, and no clear “knees” in the fault 
curve, contrary to what is observed in [lo]. (See more dis- 
cussions in [13]). 

3 SEQ Replacement Algorithm 

The intuition behind the SEQ replacement algorithm is to 
detect long sequences of page faults and apply MRU replace- 
ment to such sequences. The goal is to avoid LRU flooding, 
which occurs when a program accesses a large address space 
range sequentially. If a program accesses an address range 
once, LRU would page out useful pages that would be ac- 
cessed again; if the program accesses the address range mul- 
tiple times and the range is larger than physical memory, 
LRU would page out the pages in the order in which they 
are accessed and thus perform poorly, as described above. 

If no sequences are detected, SEQ performs LRU replace- 
ment 

3.1 Design 

There are four main components in SEQ’s design: 

What is a ‘sequence”? A sequence is a series of page 
faults to consecutive virtual addresses, growing in one 
direction (increasing addresses or decreasing addresses) 
with no other faults to pages in the middle of the se- 
ries. (We refer to most recently-added page-the page 
at the end of the sequence in the direction of growth- 
as the head of the sequence.) 

When memory is low and a page much be paged out, 

which sequence is chosen to replace a page from? SEQ 
chooses only sequences of length greater than L (cur- 
rently 20 pages); it examines the time of the Nth (cur- 
rently N = 5) most recent fault in each sequence, and 
chooses the one whose fault is most recent. 

Whtch page from the chosen sequence is replaced? SEQ 

chooses the first in-memory page that is A4 (currently 
20) or more pages from the head of the sequence. 
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Figure 1: Performance of OPT, SEQ and LRU. For es and gnuplot, the SEQ curve almost overlaps the OPT curve. For 
coral and gee, the SEQ curve overlaps the LRU curve. 
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4. What happens to a .sequence if u page fault occurs zn 

the middle of the address range of the sequence? SEQ 
splits the sequence into two sequences, one ranging 
from the beginning of the sequence to the page im- 
mediately preceeding the faulted page, and the other 
consisting of the faulted page alone. 

Choices of values for L, N and M is discussed in Section 3.2. 
SEQ detects replaceable sequences by observing page faults 

(not page references) and associates them based on adjacent 
virtual addresses. SEQ maintains a list of sequences, record- 
ing (for each sequence) the tuple <low-end, high-end, dir>. 

The tuple indicates a sequence ranging from virtual address 
low-end to virtual address high-end, faulting (as time in- 
creases) in the direction dir (which is either up or down). 
When a page fault on page pf occurs, SEQ examines se- 
quences adjacent to pf. If t.he new page fault extends the se- 
quence (i.e. pf = high-end $1 and dir = up, or pf = low-end 

-1 and dir = down), the sequence’s low-end or high-end is 
changed to include the current fault. 

If pffalls in the middle of the sequence (i.e. low-end 5 pf 
5 high-end), then the sequence is split into two, one being 
<low-end, pf -l,dir> if dar = up or <pf +l, high-end, dir> 

if dir = down, and the other consisting of the new fault 
only (i.e. <pf, pf, nil>, nil meaning the direction cannot 
be determined for now). If pfdoes not extend any existing 
sequence nor overlap any sequence, then a new sequence is 
built, <pf, pf, nil>. If pf can extend two existing sequences, 
SEQ deletes the older of the sequences (the one whose last 
fault is earlier) and extends the newer sequence. In addition, 
if extending a sequence would lead to overlapping with an- 
other sequence, then the sequence that would be overlapped 
is deleted. 

SEQ limits the number of sequences that it tracks. (Cur- 
rently the limit is 200). When adding a new sequence would 
exceed the limit, SEQ first deletes the oldest sequence (by 
time of the most recent fault to that sequence) of length 
less than L. (If all sequences are longer than L, SEQ would 
delete the oldest sequence with length 5 2 * L, etc.) 

When a replacement page must be chosen, SEQ examines 
all sequences of length 2 L, and tries to pick the sequence 
that faulted most recently. The heuristic we use is to sort 
these sequences based on the faulting time of their Nth most 
recent fault, and choose the one with the more recent fault 
time. Currently N = 5. If no sequence with length 2 L 
exists, the default LRU replacement is used. 

Once a sequence is picked, SEQ is constrained not to 
replaces pages closer than M pages away from the sequence 
head. Starting from the Mth page away from the head, SEQ 
skips any on-disk pages, choosing the first in-memory page it 
finds. If it cannot find an in-memory pages in this sequence, 
SEQ examines the next sequence as determined above. For 
efficiency, SEQ keeps track of the range of on-disk pages in 
each sequence, so that the search for a replacement page can 
skip many on-disk pages in one step. 

In our current implementation, SEQ takes roughly 10K 
bytes to keep track of 200 sequences (each taking roughly 48 
bytes). Depending on applications, SEQ also takes slightly 
more CPU time than LRU for each replacement. We are 
still working on reducing the overhead of SEQ. 

3.2 Simulation Results 

Since our traces contain only IN and OUT records, we can- 
not simulate SEQ accurately under all circumstances. In- 
stead, we conduct a slightly conservative simulation. That 
is, if a chosen-for-replacement page is IDLE (i.e. it is not ac- 
cessed until its next IN record), the page is simply replaced; 
if the page is ACTIVE (i.e. it is between an IN record and 
an OUT record, which means it is accessed actively during 
this interval), we replace the page and then immediately 
simulate a fault on the page to bring it back into memory. 
This results in a simulation that slightly under-estimates 
the actual performance of SEQ, because in reality the page 
fault would occur sometime later in the current or the next, 
interval. 

Simulation results are shown in Figures 1 and 2. Clearly, 
SEQ performs significantly better than LRU, and quite close 
to optimal, for the applications with clear access patterns 
(for example, gnuplot and turb3d). For other applications 
SEQ’s performance is quite similar to LRU. 

We have varied the three SEQ parameters (L, M, and 
N) and observed resultant performance changes. Intuitivelv. 
the larger the value of L, the more conservative the algo- 
rithm will be, because it is less likely that a run of faults 
will be long enough to be considered a sequence. Reducing 
L has the opposite effect. Similarly, the parameter &I is set 
to guard against the case when pages in a sequence are re- 
accessed in a short time period. If the pages in the sequence 
are accessed only once, then M should be set to 1; however, 
if there is reuse of pages near the head of the sequence, then 
M should be larger to avoid replacing in-use pages. 

We experimented with three different settings of L and 
M: (L = 20, M = 20) (the default), (L = 50, M = 20), and 
(L = 50, M = 50), and found that SEQ’s performance is 
unaffected for most of the applications. The three applica- 
tions that show visible differences are applu, perl, and swim; 
Figure 3 shows their fault curves under the three parame- 
ter settings. For applu, since it has many short sequences 
that are disqualified for replacement when L = 50, SEQ at 
L = 50 essentially performs LRU replacement most of the 
time. Swim also has many small to medium length sequences, 
and SEQ at M = 50 appears to interact poorly with swim’s 
behavior at small memory sizes. For the rest of the appli- 
cations, SEQ’s performance is essentially unaffected by the 
parameter changes. 

The parameter N affects the choice of sequences in situa- 
tions when sequences grow at varying rates: as N increases, 
so does the likelihood that SEQ will choose the sequence 
that grows fastest. We did not choose N = 1 because we 
want to avoid sequences that grow at sporadic rates. Since 
the space consumed by SEQ is directly proportional to N (it 
must store the times at which the last N faults occurred), 
small N is desirable. We varied N from 5 to 20, and found 
only negligible differences in SEQ’s performance; varying N 
from 5 to 2 has virtually no effect on SEQ’s performance. 
Thus, we set N = 5. 

In summary, we found that the performance of the SEQ 
algorithm is fairly insensitive to the parameter values, and 
our current settings appear appropriate, though we plan fur- 
ther testing on this issue. More details are available in [13]. 
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4 SEQ as a Global Replacement Algorithm 

So far our discussion has focused on the performance of var- 
ious replacement policies for single applications. In real sys- 
tems, multiple processes run at the same time and com- 
pete for memory. There are two general approaches to page 
replacement in multi-process environments [12]. One ap- 
proach involves a memory allocation policy that allocates 
memory to different processes, and a page replacement pol- 
icy that chooses replacements among each process’ pages 
when processes exceed their memory allotments. Another 
approach uses a “global” replacement algorithm, where a 
replacement page is chosen regardless of which process it be- 
longs to. For example, global LRU replaces the page whose 
last reference was earliest among all memory pages. Cur- 
rently, most time-sharing operating systems use some ap- 
proximation of global LRU replacement. 

SEQ can be extended fairly easily to function as a global 
replacement algorithm. The only modification necessary is 
that the sequences must be grouped explicitly on a per- 
process basis, i.e. only page faults with the same process 
ID are associated for sequence detection. 

An obvious question is whether global SEQ would per- 
form well in a time-sharing multi-process environment. To 
provide a preliminary answer to this question, we constructed 
a very simplified simulator of a multi-process system that 
captures the dynamic interleaving of process execution. We 
use a simple round-robin time slicing policy (simulating ex- 
ecution of each program for a certain length of time) and 
a time delay to model the service time for a page fault to 
disk. We then compared the performance of global LRU and 
global SEQ under concurrent executions of the applications. 

Our simulator reads multiple application traces, taking 
a record each time from the trace corresponding to the pro- 
gram that is currently executing. We schedule processes ac- 
cording to round-robin time-sliced scheduling with context 
switch at page faults. That is, each trace (process) is run 
for a quantum, and when the quantum expires, the sched- 
uler puts the trace on the wait queue and picks a different 
trace (process). When a page fault happens, the current 
process is suspended for the duration of the service time 
of the page fault, and the scheduler picks another process 
to run. The two parameters, quantum time and page fault 
service time, are determined by a simple estimate of CPU 
speed-in our experiments the quantum is 1 million instruc- 
tions (corresponding to 1Oms on a machine capable of exe- 
cuting our programs at the uniform rate of 100 MIPS). Page 
fault service time is a uniform 400,000 instructions (4ms on 
the same 1OOMIPS machine). This is obviously a simplistic 
model, but it suffices for the purpose of creating a reasonable 
interleaving of multiple program traces. 

We picked four combinations, each of two applications, 
and one combination of three applications. The combina- 
tions are chosen to have a variety of mixes of application 
behavior and relative memory needs. They are: es+fgm, 
gcc+vortex, suim+trygtsl, vortex+gnuplot, and 
coral+wave5+trygtsl. For each combination, we measure 
the fault rate for the concurrent execution of the applica- 
tions, under both global LRU and global SEQ, for a range 
of memory sizes. Again, since most of the initial faults are 

zero-filled pages rather than disk-read pages. we do not in 
elude them in the figures. The result,s are shown in Figure 4. 

The results show that in simple multi-process environ- 
ments, global SEQ tends to outperform global LRU when 
sequential applications are run, and it performs similarly to 
global LRU when no sequential application is run. For ex- 
ample, global SEQ’s improvements over LRU in the cases 
of vortex+gnuplot and coral+uave5+trygtsl are similar 
to those in gnuplot and wave5, and global SEQ performs 
similarly to global LRU in gcc+votex. Thus, our prelimi- 
nary simulation results show that SEQ is also a promising 
algorithm for global replacement. 

5 Related Work 

Operating systems researchers have investigated the mem- 
ory management problem for over thirty years, originally to 
determine if automatic management of memory (i.e. virtual 
memory) could perform as well as programmer-controlled 
physical memory allocation. Belady’s paper in 1966 [2] 
introduced the optimal oI%ne replacement algorithm (the 
OPT algorithm). A good survey on early research results on 
paging policies can be found in [12]. There have also been 
many studies on program behavior modelling and optimal 
online algorithms for each model. The models include inde- 
pendent reference [l], LRU stack [26], working set [9], access 
graphs [4], and the Markov model [17]. For each of these 
models, optimal online algorithms are found [12, 15, 171. 

The SEQ algorithm is similar to the access-graph algo- 
rithms (41 in that it tries to take advantage of patterns found 
in reference streams. However, most theoretical studies on 
access-graph algorithms assume that the graph is known 
ahead of time, rather than being constructed at run-time. 
A recent study [ll] investigated constructing the graph at 
run-time; however the study only looked at references to 
program text, not data. Also, the algorithm proposed in 
[ll] is more complex and more expensive than SEQ. 

Although most early experimental studies focused on ef- 
ficient approximation of LRU page replacement [3, 2, 7, 201, 
one scheme, the Atlas Loop Detector, investigated loop de- 
tection and MRU replacement on scientific programs [18]. 
SEQ differs from the loop detector in that it tries hard to 
work well on applications where LRU is appropriate. The 
Atlas scheme apparently performed poorly for non-scientific 
programs [9]. 

Recent research projects on application-controlled ker- 
nels show the potential of application-specific replacement 
policies (28, 14, 21, 191. These studies focus on mechanisms 
by which applications inform the kernel about what pages 
would be good candidates for replacements. Our SEQ algo- 
rithm is basically the antithesis of such schemes. It will be 
interesting to see over time which philosophy prevails. Our 
study shows that run-time automatic sequence detection by 
the kernel may be a promising way to increase performance. 
at essentially no cost to the programmer. 

Recently there have been a number of studies of appli- 
cations’ memory reference behavior in the context of cache 
management. One study regarding processor pin bandwidth 
requirements [5] confirmed that there is a significant dif- 
ference in cache miss ratios under LRU and under OPT 
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replacement policies. Another study [23] included space- 
time graphs for some SPECS5 benchmarks. Though their 
graphs are for a much shorter duration of execution execu- 
tion (on the order of one second), the graphs are similar to 
our graphs for the SPEC95 benchmarks. Finally, one study 
of large-scale multiprocessor architectures investigated the 
“working-set” and cache size issues for parallel scientific ap- 
plications [25]. The study investigated a number of parallel 
applications, measuring their “working-sets” by simulating 
the number of cache misses versus cache sizes under the 
LRU replacement. The cache misses versus cache size curves 
in [25] are quite similar to our LRU page fault curves for sci- 
entific applications. These studies suggest that the reference 
behavior at page level might be similar to that at cache line 
level. We plan to investigate this correlation. 

Sequence detection can be used for prefetching purposes 
as well. Indeed there are sequence detectors for prefetch- 
ing in hardware cache management [27, 16, 221. However, 
prefetching does not reduce bandwidth consumption; it merely 
reduces latency by overlapping I/O with computation. Good 
replacement policies, on the other hand, reduce both band- 
width consumption and latency. In this paper we focused 
on replacement algorithms only; how to balance prefetching 
and cache management (page replacement) is a complicated 
issue that needs further study [6]. 

6 Conclusions and Future Work 

Our study of application reference behavior and space-time 
graphs shows that applications’ memory reference behavior 
varies significantly. There are at least three categories: no 
visible access pattern, minor observable patterns, and reg- 
ular patterns. We found that LRU performs similarly to 
OPT, though incurring roughly twice as many page faults, 
for the memory-intensive and pattern-less applications. How- 
ever, LRU performs poorly for regular-pattern applications. 

We proposed a new replacement algorithm, SEQ. SEQ 
detects linear access patterns (sequential behavior) and per- 
forms semi-MRU replacement on sequences associated with 
such patterns. SEQ performs similarly to LRU for memory- 
intensive applications, and corrects the LRU flooding prob- 
lem for many regular-pattern applications. Indeed SEQ’s 
performance approaches that of OPT for a number of regular- 
pattern applications. 

We also found that for multi-process systems, SEQ ap- 
pears to be a good algorithm for global replacement. Com- 
parison of global LRU and global SEQ show that global 
SEQ can effectively improve multi-application performance 
just as it improves single application performance. 

There are a number of limitations in our work. We 
need to experiment SEQ on a wider variety of applications. 
Kernel implementation of SEQ is underway to test its per- 
formance in real systems. Finally, we plan to incorporate 
prefetching in SEQ. 
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