
On the Existence of a Spectrum of Policies that Subsumes the
Least Recently Used (LRU) and Least Frequently Used (LFU) Policies

Donghee Leet * Jongmoo Choit Jong-Hun Kim+

Abstract

Sam H. Nohs Sang Lyul Mint
t Department of Computer Engineering

Seoul National University
Seoul 151-742, Korea

http://ssrnet.snu.ac.kr
http://archi.snu.ac.kr

We show that there exists a spectrum of block replacement
policies that subsumes both the Least Recently Used (LRU)
and the Least Frequently Used (LFU) policies. The spec-
trum is formed according to how much more weight we give
to the recent history than to the older history, and is re-
ferred to as the LRFU (Least Recently/Frequently Used)
policy. Unlike many previous policies that use limited his-
tory to make block replacement decisions, the LRFU policy
uses the complete reference history of blocks recorded dur-
ing their cache residency. Nevertheless, the LRFU requires
only a few words for each block to maintain such history.
This paper also describes an implementation of the LRFU
that again subsumes the LRU and LFU implementations.
The LRFU policy is applied to buffer caching, and results
from trace-driven simulations show that the LRFU performs
better than previously known policies for the workloads we
considered. This point is reinforced by results from our in-
tegration of the LRFU into the FreeBSD operating system.

1 introduction

The Least Recently Used (LRU) and the Least Frequently
Used (LFU) block replacement policies are popular cache
block replacement policies due to their simplicity and effi-
ciency. In this paper, we show that between these seemingly
independent two policies, there exists a spectrum of policies
that subsumes these two policies. This spectrum of policies,
which we refer to as the Least Recently/Frequently Used
(LRFU) policy, inherits the benefits of the two policies re-
sulting in a policy that is superior to both as well as other
policies that have been previously suggested [l, 2, 31. In
the remainder of this section, we first give the motivation
behind the development of the LRFU policy in the buffer

*Currently with the Dept. of Information Engineering, Cheju Na-
tional University, Korea.

‘The author wishes to acknowledge the financial support of the
Korea Research Foundation made in the program year of 1998.

Perrmswon to make dlgital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided fhat
copies are not made or distributed for proftt or commercial advan-
tage and that copies bear this notice and the full citatton on the first page.
To copy otherwse. to republtsh, to post on servers or to
redistribute to IIsts. requtres prior specific permission and/or a fee.
SIGMETRICS ‘99 5/99 Atlanta. Georgia, USA
0 1999 ACM l-581 13-083.X/99/0004...$5.00

Yookun Chott Chong Sang Kimt
SDepartment of Computer Engineering

Hong-Ik University
Mapo-Gu Sangsoo-Dong 72-l

Seoul 121-791, Korea
http://www.cs.hongik.ac.kr/noh

caching realm. In so doing, we discuss some qualities that
merit the LRFU policy over other policies. Then, we review
some of the previous policies that have been proposed for
buffer caching.

1.1 Motivation

The study of cache block replacement policies is, in essence,
a study of the characteristics or behavior of workloads to a
system. Specifically, it is a study of access patterns to blocks
within the cache. Based on the recognition of access patterns
through acquisition and analysis of past behavior or history,
replacement policies resolve to identify the block that will
be used furthest down in the future, so that that block may
be replaced when needed. The LRU policy does this by at-
taining the recency of block references while the LFU policy
considers the frequency of block references. These respec-
tive policies are inherently assuming that future behavior
of the workload will be dominated by the recency or fre-
quency factors of past behavior. Similarly, most previously
proposed policies can also be placed in either category dif-
fering only in aspects of how much history to use and how to
use this information [I, 2, 31. Furthermore, for each policy,
the rules for acquiring and analyzing the history are fixed
for all workloads and system configurations. We discuss in
the following why this is not sufficient, and that for various
stages of system activity and configurations the acquisition
of history and its analysis must also adequately adapt.

Consider the graphs in Fig. 1. These graphs show the
influence of the recency and frequency factors of past ref-
erences on the likelihood of future references. The z-axis
is the recency factor and the y-axis the frequency factor,
and the shades of each graph shows the probability of being
re-referenced (the darker the shades, the higher the prob-
ability) for blocks with a particular recency and frequency
value. The recency factor refers to the time uni.ts passed
since its last reference, while the frequency is the number of
references made to the block since its inclusion to the cache.
For example, consider in Fig. l(a), a block with frequency
count of 10 and which was referenced 50 time units in the
past (denoted by the ‘x’ mark). The graph shows that this
block has roughly a 25% chance of being re-referenced before
being replaced.

All of these graphs were obtained based on the off-line
optimal algorithm for various cache sizes using a real-life
trace, specifically the DB2 trace [3]. Details regarding this
trace are given in Section 4.

134

(a) Cache Size 20

(c) Cache Size 200 (d) Cache Size 500

Figure 1: Change in the influence of recency and frequency factors on the probability of re-reference as cache size changes.

Note from the graphs in the figure that as the cache
size changes the shading pattern gradually changes as well.
When the cache size is small the darker shades run along
the vertical y-axis meaning that the recency aspect of past
behavior is much more important than the frequency as-
pect, hence policies such as the LRU or some variant of it
should be used. However, as the cache size becomes large,
much of the darker shadings (that is, higher probability of
re-reference) are on the top of the graphs running along
the horizontal z-axis. This means that the frequency as-
pect is now more important than the recency aspect, hence
appropriate policies reflecting this change must be used to
hold in the cache those blocks that are more likely to be
re-referenced.

This observation tells us that the best policy would be
that which adequately incorporates the recency and fre-
quency aspects according to the system configuration and
workload. The LRFU is a policy that does so. The LRFU
policy represents a spectrum of policies that lies between
the LRU and LFU policies, subsuming both the LRU and
LFU policies. Each policy within this spectrum represents
a balance between the recency and frequency factors of past

behavior, at one end considering only the recency aspect
and at the other end considering only the frequency aspect.
Furthermore, the LRFU policy uses the complete reference
history of blocks recorded during their cache residency. Nev-
ertheless, the policy requires only a few words for each block
to maintain information about its past references. Its imple-
mentation has a time complexity that ranges from O(1) to
O(log, n) and again subsumes the LRU and LFU implemen-
tations. The exact time complexity depends on how much
more we weigh the recency over the frequency factor, which
is controlled by a parameter.

Before going into the details of the LRFU policy, a review
of related works is given in the next subsection.

1.2 Related works

This subsection surveys the studies that aim to overcome
the limitations of the LRU and LFU policies. Our discus-
sion focuses on two recent papers, one by Robinson and
Devarakonda [2] and the other by O’Neil et al. [l].

A frequency-based policy called the FBR (Frequency-
based Replacement) was proposed by Robinson and De-

135

varakonda [2]. The difference between the FBR and the
conventional LFU is that the former replaces blocks based
on the frequency of references whose short-term locality has
been factored out via a special buffer called a raeu, section [2].
The new section consists of k most recently referenced blocks
where L is implementation dependent. When there is a hit
to a block in the new section, the corresponding reference
is considered to be correlated to a previous reference to the
same block and the reference count of the block is not in-
cremented. This is motivated by the observation that the
reference count that increments on every reference can be
misleading and the modified reference count is a more ac-
curate indicator of the probability that the block will be
re-referenced in the near future. Through simulation stud-
ies, it is shown that the FBR outperforms the LRU for the
workloads that were considered [a].

O’Neil et al. present the LRU-K replacement policy that
bases its replacement decision on the time of the Kth-to-last
reference to the block [I]. In other words, its replacement
decision is based on the reference density [4] observed dur-
ing the past h’ references. Thus, when K is large, it can
discriminate well between frequently and infrequently refer-
enced blocks. On the other hand, when K is small, it can
remove cold blocks quickly since such blocks would have a
wider span between the current time and the h’th-to-last
reference time.

However, the LRU-K ignores the recency of the h’ - 1
references, and considers only the distance of the Rth refer-
ence. This violates the rule of thumb that the more recent
behavior predicts the future better. For example, assume
that (7, 31, 35) and (7, 9, 25) are the reference histories
of blocks a and b, respectively. Then, LRU-3 would treat
both blocks equally since their third-to-last reference times
are the same (that is, 7) although, intuitively, block a is
more likely to be referenced in the near future since its last
and second-to-last references are more recent. For this rea-
son, the LRU-K is not very adaptive to changing workloads
when K is large. Also, it incurs an O(K) space overhead to
keep the history of the last K references, though it is noted
that a large K value may not be necessary in practice [l].
Further, since the LRU-K requires that all of the last h’ ref-
erence times of each block be maintained, blocks that have
not acquired all its K reference history must be handled as
special cases. If the history of a block is not saved when
the block is replaced from the buffer cache, a considerable
length of time may be needed to reacquire its history, and in
some cases, it may be replaced again before acquiring all the
li reference times. To cope with this problem, the LRU-K
maintains the history of a block for an extended period of
time after the block is replaced from the buffer cache.

As previously mentioned, one advantage of the LRU-K
is that it can quickly remove cold blocks from the buffer
cache when K is small. Johnson and Shasha propose a
block replacement policy called 2Q starting from a similar
motivation [3]. In this approach, a missed block is initially
placed in a special buffer called the Al queue. A block in
the Al queue is promoted to the main buffer cache only
when it is re-referenced while in the Al queue. Otherwise,
it is replaced when it becomes the LRU block in the Al
queue. This allows cold blocks to be removed quickly from
the buffer cache as in the LRU-K. The time complexity of
the 2Q policy is O(l), which is significantly lower than the
O(log, n) time complexity of the LRU-K policy.

Buffer management schemes have also been extensively
studied in the database arena [5] (also see the references
therein). However, many of its algorithms make use of in-

formation deduced from query optimizer plans. Another
similar approach that exploits external information is the
application-controlled file caching scheme [6]. These schemes
are promising approaches but are beyond the scope of this
paper.

1.3 The Remainder of the Paper

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the LRFU policy in detail. Its implemen-
tation is discussed in Section 3. In Section 4, we compare
the performance of the LRFU policy with those of previ-
ous policies through trace-driven simulations. In Section 5,
we discuss a couple of practical issues, namely its actual de-
ployment in a real operating system and the extension of the
policy where the parameter of the LRFU is changed period-
ically according to workload evolution. Finally, we conclude
this paper in Section 6.

2 The least Recently/Frequently Used (LRFU) policy

The LRFU policy associates a value with each block. This
value is called the CRF (Combined Recency and Frequency)
value and quantifies the likelihood that the block will be ref-
erenced in the near future. Each reference to a block in the
past contributes to this value and a reference’s contribution
is determined by a weighing function F(z) where 2 is the
time span from the reference in the past to the current time.
For example, assume that block b was referenced at times 1,
2, 5, and 8 and that the current time (t,) is 10. Then, its
CRF value at tc, denoted by G,(b), is computed as

C&(b) = F(lO - 1) + F(l0 - 2)

+ F(10 - 5) + F(lO - 8)

= F(9) + F(8) + F(5) + F(2).

F(Z) essentially reflects the influence of the recency and fre-
quency factors of a block’s history in projecting the likeli-
hood of it being re-referenced. In general, 7(z) is a decreas-
ing function to give more weight to more recent references.
Therefore, a reference’s contribution to the CRF value is
proportional to the recency of the reference. We define the
CRF value of a block more formally as follows.

Definition 1 Assume that the system time can be repre-
sented by an integer value and that at most one block may
be referenced at any one time. The CRF value of a block b
at time &se, denohted by Ctbass(b), is defined as

Ctbose (b) = 2 F(tbase - tb,)

where 7(x) is a &tghing function and {i&, tbz,. . . , tbk} are
the reference times of block b and tbI < tbz < .” < tb,, 5
tbase-

The proposed LRFU policy replaces the block with the
minimum CRF value. This policy differs from the LFU pol-
icy in that the contribution of each reference is not always
the same but depends on its recency. The policy also differs
from the LRU policy in that it considers not only the most
recent reference but also possibly all the other references in
the past.

Intuitively, if F(x) = 1 for all 2, then the CRF value
degenerates to the reference count. Thus, the LRFU policy
with F’(z) = 1 is simply the LFU policy.

Property 1 If F’(z) = c for all x where c is a constant,
then the LRFU policy replaces the same block as the LFU
policy.

136

(Y

(armt ttmx- ref- tim)

Figure 2: Spectrum of LRFU according to the function
F(x) = (g= where x is (current-time - reference-time).

To show that the LRFU policy also subsumes the LRU
policy, we give an example of 7(z) that makes the LRFU
policy replace the same block as the LRU policy. Assume
that block a was most recently referenced at time t and that
another block b was referenced at every time step starting
from time 0 but its most recent reference was made at time
t - 1. The LRU policy will replace block b in favor of block a
although block b has been referenced many more times than
block a. For the LRFU policy to mimic this behavior, the
CRF value of a must be larger than that of b at current time
t,, i.e., C,,(a) = F(t, - t) > C,,(b) = c:;.O 7(t, - t’). By
generalizing the above condition, we have the following.

Property 2 1f T(z) satisfies the following condition, then
the LRFU policy replaces the same block as the LRU policy.

vi F(i) > 2 F(j) for any k where k 2 i + 1
j=i+l

A class of functions that satisfy both Property 1 and Prop-
erty 2 is F(z) = (k)‘, where p > 2 and X ranges from 0 to
1. This class of functions where p = 2 is shown in Fig. 2.
An intuitive meaning of X in this function is that a block’s
CRF value is reduced to $ of the original value after every

+ time steps. For example, if X is 0.0001, a block’s CRF
value is reduced to $ after every 10000 time steps. This
control parameter X allows a trade-off between recency and
frequency. In addition, this function has the property that it
gives more weight to more recent references, which is consis-
tent with the principle of temporal locality. As X approaches
0, the LRFU policy moves towards a frequency-based policy.
Eventually, when X is equal to 0 (i.e., F(z) = l), the LRFU
policy is simply the LFU policy. On the other hand, as X
approaches 1, the LRFU policy moves towards a recency-
based policy, and when X is equal to 1 (i.e., F(r) = (i)=
for p 1 2), the LRFU policy degenerates to the LRU pohcy.
(Note that F(z) = (i)” for p 1 2 satisfies Property 2.) The
spectrum (Recency/Frequency) in Fig. 2 is where the LRFU
policy differs from both LFU and LRU, assuming p = 2.

3 Implementation of the LRFU policy

From the description of the LRFU policy in the previous sec-
tion, one can observe that all history of a block is retained
and that the CRF values must constantly be updated. As
is, the LRFU policy is unimplementable, and for the LRFU
policy to be of any practical value these issues must be rec-
tified.

3.1 Maintaining all reference history

In general, computing the CRF value of a block requires
that the reference times of all the past references to that
block be maintained. This obviously requires unbounded
memory and thus, makes the policy unimplementable. We
show in the following that if the weighing function F’(z) has
either the Y=(z + y) = 7(z)T(y) or F(z + y) = 7(z) +F(y)
properties, the storage and computational overheads can be
reduced drastically such that this policy becomes not only
implementable but also efficient. For the remainder of the
paper, we concentrate on the first property as the second
can be handled analogously to the first one.

Property 3 IjF(z + y) = T(z)F(y) for all 2: and y, then
Ctbk (b) is derived from CtbkmI (b) as follows:

Ctbk (b) = -j&s, - tb,)

i=l

k-l

= .T(tbk - tbk) + c F(tb,, - tb,)

i=l

k-1

= F(O) + c -T(tbk - tb,).

t=l

Let 6 be tbrc - tbLdI.

k-l

Ctbk (b) = F(o) + c F(tbk - tb,)

i=l

k-l

= F(o)+ xF(6+tb,-, -h)

i=l

k-l

= F(o) + c F(+?tb,-, - tb,)

i=l

k-l

= J=(O) + F(S) C F(tbk-x - tbi)

i=l

= W’) + WW,k-l @I.

Property 3 states that if F(z+y) = F(z)F(y) then the CRF
value at the time of the Kth reference can be computed from
the time of the (K - 1)th reference and the CRF value at
that time. Similar derivation shows that Ct,(b), which is the
CRF value of block b at current time t,, can be computed
by multiplying F(6) and Ctbk (b) where 6 = t, - tbk. This
shows that, at any time, the CRF value can be computed
using only two variables for each block, and these are all the
history the block needs to maintain. Note that the function
7(z) = (f)“” for p 2 2 explained in the previous section
has the 7(z + y) = F(z)7(y) property.

3.2 Keeping the CRF values in order

As the LRFU policy replaces the block with the minimum
CRF value, it is necessary that the blocks be ordered accord-
ing to their CRF values. Generally, however, a reference’s
contribution to the CRF values changes over time, hence,
the CRF value of a block changes with time as well. This
requires that the CRF value of every block be updated at
each time step and that blocks be reordered according to the
new CRF values again at each time step. Fortunately, with

137

1. if b is already in the buffer cache
2. then
3. CRFt,,t(b) = F(o) + F(tc - LAST(b)) * CRFu(b)
4. LAST(b) = t,
5. Restore(H, b)
6. else
7. fetch the missed block from the disk
8. CRFta..r(b) = F(O)
9. LAST(bj k t,
10. victim = ReplaceR.oot(H, b)
11. if victim is dirty
12 then
13. write-back the viedim to the disk
14. fi
15. fI
16. - --
17. Restore(H, b)
18 if b is not a leaf node
19. then
20. let smaller be the child that has the
20(c&). smaller CRF value at the current time
21. if F(t, - LAST(b)) * CRFz,.t(b)
2l(cont). > F(t, - LAST(smaller)) * CRF,,,~(smaller)
22. then
23. swap(H, b, smaller)
24. Restore(H, smaller)
25. tl
26. fi
27. end Restore
28. ---
29. ReplaceRoot(H, b)
30. victim = H.root
31. H.root = b
32. Restore(H, b)
33. return victim
34. end ReplaceRoot
35. - _-__--

Figure 3: Buffer cache management algorithm.

F(z) = (b)‘, for p 2 2, the relative ordering between two
blocks does not change until either of them is referenced,
hence reordering of blocks is needed only upon a block ref-
erence. We prove this in the following.

Property 4 With F(z) = (k)‘% jorp > 2, if&(a) > G(b)

and neither a nor b has been referenced after t, then C,I (u) >
C,/(b) for all 1’ 2 t.

Proof. Let 6 = t’ - t. Since F(z + y) = F(z)F(y), we
have C,,(a) = 7(6)&(a) and C,,(b) = 7(6)&(b). Also, since
F(z) > 0 for all z and &(a) > G(6), the following inequality
holds C,,(a) = ?(G)&(a) > 5=(S)Ct(b) = C,,(b). 0

We have presented, thus far, F(z) = (;)“I for any p 2 2,

to be an adequate weighing function for the LRFU policy.
For the remainder of this paper, we concentrate only on the
weighing function 3-(z) = (i)‘, as its range covering both-
the LFU and LRU is between b and 1, which is common in
other studies that involve control parameters.

3.3 The Algorithm

The algorithm that is invoked upon a block reference is given
in Fig. 3.

Like many other replacement algorithms that base their
decision on the ordering of blocks by a given criterion, the
LRFU uses the heap data structure to maintain the ordering
of blocks according to their CRF values (the root has the
smallest CRF value). In the algorithm in Fig. 3, H is the

heap data structure, tc is the current time and LAST(b) and
CRFlast(b) are the time of the last reference to block b and
its CRF value at that time, respectively. The algorithm first
checks whether the requested block b is in the buffer cache.
If it is, the algorithm recalculates its CRF value, updates
the time of the last reference, and, if needed, restores the
heap property of the sub-heap rooted by b. In the other
case where the block is not in the buffer cache, the missed
block is fetched from disk and its CRF value and the time
of the last reference are initialized. Then, the root block of
the heap is replaced with the newly fetched block and the
heap property is restored. In addition, if the replaced block
is dirty, it is written-back to the disk.

As in other replacement algorithms that use the heap
data structure, in the LRFU the maximum number of swap
operations is equal to the height of the heap minus one, i.e.,
[log,(n+l)l- 1. The only additional overhead of the LRFU
over other policies is due to the invocations of F(z) when
CRF values are compared, the maximum number of which
is bounded above by 2 x ([log,(n + 1)1 - 1) since F(X) is
invoked twice at each level of the heap.

3.4 Optimized Implementation of the LRFU policy

The O(log, n) time complexity of the LRFU policy is com-
parable to that of the LFU policy. However, this time com-
plexity is considerably higher than the O(1) time complexity
of the LRU policy, which is simply the LRFU policy with
X = 1. In the following, we show that the LRFU policy
with F(z) = (3)“” also lends itself to a spectrum of im-
plementations whose time complexities depend on the value
of X. In this implementation spectrum, the points corre-
sponding to the LFU and the LRU have O(log, n) and O(1)
time complexities, respectively, which are equal to the time
complexities of their native implementations.

Property 5 In the LRFU policy with F(x) = (i)‘=, there
exists a threshold distance dthr.+&d such that

V d>d threshold, F(O) > -p(i).

t=d

In partiCuhr, the T?Z~n~?rHI~ Of SUCh dthresh&i VCdueS iS given

kp-(+P)

bf a 1.

Proof. Let d’ be such a&,.,&&&. Then, d’ should satisfy

F(0) = 1 > J+(i)
kd’

= (;,ad’ + +)W’tl) + +)*(d’tZ) + . . .

= (;)“d’(l+(;)h+(;)sX+...)

= (;Yd’cj-+
2

Multiplying both sides by 1 - (i)“, we have

* l- (;)A > ($Xd

Taking log+ on both sides, we have

===+ l%# - (f)“) < Xd’

Finally, simplifying this equation then gives

===+ d’>[
log;(l- (f)“)

x 10

138

This property states that a. block whose most recent refer-
ence was made earlier than dthrechold time units ago cannot
have a CRF value larger than F(O), which is the CRF value
of the currently referenced block. Conversely, for a block
to have a CRF value larger than 3(O), its most recent ref-
erence must have been made within dthresh& time units.
This states that the number of blocks that have CRF val-
ues larger than F(O) is bounded above by dth,.&,&. Hence,
we maintain dthreohold blocks in the heap and the remaining
blocks in a linked list such that any block maintained in the
heap has a larger CRF value than that of any block in the
linked list. With this setting, the CRF value of the blocks
in the linked list cannot be larger than F(O) since the num-
ber of blocks that can have CRF values larger than F(0)
is bounded above by dthreshold and the number of blocks
maintained in the heap is dthreshold.

The optimized LRFU implementation operates as fol-
lows. When the requested block is not in the buffer cache,
the block at the tail of the linked list is replaced and the
block at the root of the heap is demoted to the head of the
linked list (cf. Fig. 4(a)). Then, the currently requested
block, which has F(O) as its CRF value, becomes the new
root of the heap and the restore operation is performed on
the heap with time complexity o(log, dthreshold). Further,
the assertions that the CRF value of the blocks in the heap
is larger than that of the blocks in the linked list and that
the CRF value of the blocks in the linked list is smaller than
3(O) are maintained.

The other case where the requested block is in the buffer
cache can further be divided into two cases depending on
whether the currently referenced block is in the heap or in
the linked list. First, consider the case where the currently
requested block is in the heap. Here, the restore operation
needs to be performed only for the sub-heap rooted by the
currently requested block (cf. Fig. 4(b)). In the other case
where the currently requested block is in the linked list,
the block corresponding to the root of the heap is demoted
to the head of the linked list and the currently requested
block becomes the new root (cf. Fig. 4(c)). Then, the re-
store operation is performed on the entire heap. The time
complexity for both cases is o(log, dthreshold) and the two
assertions are maintained. In summary, for all the cases the
time complexity of the optimized LRFU implementation is
o(lO& dthreshold).

On the LRU extreme of this optimized LRFU imple-
mentation (i.e., when x = l), dthreshold, which is given by
,logl(l-(+)i)

1, is equal to 1. Thus, only one block needs to
be maiitained in the heap. This implies that all the blocks
in the buffer cache can be maintained by a single linked
list. This corresponds to the native LRU implementation
and its time complexity is O(1). On the other hand, as we

move towards the LFU extreme, the number of blocks that
should be maintained in the heap increases. Eventually, on
the LFU extreme (i.e., when x = 0), dthreshold is equal to 00
and, thus, every block should be maintained in the heap. As
a result, the time complexity becomes O(log, n). This again
coincides with the time complexity and the data structure of
the native LFU implementation. Fig. 5 shows the spectrum
of the LRFU implementations.

4 Experimental results

In this section, we discuss the results from trace-driven simu-
lations performed to assess the effectiveness of the proposed
LRFU policy. We used two different types of real workload
traces: file system traces from the Sprite network file sys-
tem [7] and database traces that consist of the DB2 trace
used by Johnson and Shasha [3] and the OLTP trace used
by both O’Neil et al. [l] and Johnson and Shasha [3].

The Sprite trace contains requests to a file server from
client workstations for a two-day period. Among the client
workstations, we selected three with the most requests (client
workstations 54, 53 and 48) and simulated their buffer caches.
Client workstation 54 made 203,808 references to 4,822 unique
blocks, client workstation 53 made 141,223 references to
19,990 unique blocks, and client workstation 48 made 133,996
references to 7,075 unique blocks where the block size is 4
Kbytes. For all the three traces, no client caching was
assumed in order to acquire the complete record of block
references. Readers are referred to the paper by Baker et al.
[7] for more details regarding the Sprite trace.

The DB2 trace was obtained from a commercial installa-
tion of DB2 and contains 500,000 references to 75,514 unique
blocks [3]. The OLTP trace contains references to a CODA-
SYL database for a one-hour period. This trace consists of
914,145 references to 186,880 unique blocks [I].

The performance of the LRFU policy is compared with
those of the LRU, LRU-2, and 2Q policies. In the simu.la-
tion, we used the weighing function 7(z) = (i)“” explained
in Section 3. For the 2Q and LRFU policies, the choice of
parameters, specifically, the length of the Al queue and the
X values, respectively, influence the performance of the poli-
cies. For our experiments, the length of the Al queue was
based on the suggestions of the authors [3], and among these
results, the best ones are reported. Likewise for the LRFU,
we report the best findings of the experiments. For all the
policies, we factored out the references that were correlated
with prior references as described in [2].

4.1 Comparison of the LRFU policy with other policies

Figs. 6 and 7 show the hit rates of the LRFU policy as a
function of the cache size for the Sprite and database traces,

139

cl A
h-p

IImp (single .Iemult,

< N

LR” .nnnw LF” .xtmrm

Figure 5: Spectrum of the LRFU implementations.

respectively. Note that the y-axis does not start from 0 and
that the scales are different for each of the figures. This
arrangement is intended to show clearly the relative perfor-
mance of the policies.

In the figures, for most cases, the LRFU policy performs
best, while the LRU-2 and 2Q policies show similar perfor-
mance, giving and taking at particular cache sizes. The 2Q
policy performs strongly when the cache size is small, oc-
casionally performing better than the LRFU policy. (The
reason behind this is explained below.) However, its hit
rate starts to converge early, that is, at a smaller cache size,
than other policies. As was shown in earlier results, the
LRU policy performs the worst [l, 31. However, it performs
reasonably well when the cache size is large.

Experiments were performed with increasing cache sizes
until there was less than 1% change for all policies. The
corresponding cache size ranges, when this is observed, differ
widely depending on the locality of the workload represented
by the trace; for the Sprite trace of client 54 its range is
over f of the footprint (3000 blocks vs. 4822 unique blocks
in the trace); on the other hand, for the Sprite trace of
client 48, it is below $ of the footprint (1000 blocks vs.
7075 unique blocks in the trace). When the cache size is
beyond the above range, only a few misses will occur due
to the lack of cache space and the miss rate will largely be
affected by cold start misses, i.e., misses that occur when
blocks are referenced for the first time. After this point,
bigger caches and better replacement policies will improve
the performance marginally; only look-ahead schemes and
larger block sizes will be helpful.

When the cache size is small, the hit rates of the LRFU
policy is only comparable to those of the LRU-2 and 2Q
policies for the Sprite trace (client workstation 53) and the
DB2 trace. The LRFU policy even performs worse than
these policies for some cache sizes. This is because in our
experiments the LRU-2 and 2Q policies retain the history
of references even after the blocks are replaced from the
buffer cache [3]. Thus, when the block is brought back into
the buffer cache it starts with a good knowledge of its past
behavior. However, we chose not to allow this for the LRFU
policy as this is a better representation of the real world.

After making these initial observations, we modified our
simulation program so that the LRFU policy also retains the
blocks’ past history (i.e., LAST(b) and CRJ’r,,t(b)) even
after they are replaced as in the LRU-2 and 2Q policies.
When this modification is made, the LRFU policy surpasses
the LRU-2 and 2Q policies even for small cache sizes for
client workstation 53 in the Sprite trace and the DB2 trace
as can be seen in Table 1.

For comparison purposes,, Figs. 6 and 7 also give the
hit rate of the off-line optimal replacement policy, which
replaces the block that will not be referenced for the longest

HH Rate

+oPT
OLRN

- LRU-2
**.

*LRu

(a) Client workstation 54 in the Sprite trace
Hil Rate

+oPl
I i 4 LRFU

- LRUP

Cache Size(# of blocks)

(b) Client workstation 53 in the Sprite trace
HI Rate

+-OPT

4LRFU

‘LRU-2

-2a

* LRU

500

Cache Size(# of blocks)

(c) Client workstation 48 in the Sprite trace

Figure 6: Comparison of LRFU with other policies using
Sprite trace.

the

140

5cwJ IWW

Cache Size(x of blocks) Cache sire(r 0, blocks,

(a) DB2 (b) OLTP

Figure 7: Comparison of LRFU with other policies using the database trace.

Table 1: Comnarison of hit rates when historv is keot when
the associated block is replaced for the LRFU as was done
with the LRU-2 and 2Q policies.

I Cache Size II LRU I LRU-2 I ZQ I LRFU 1
(blocks)

(a) Client workstation 53 in the Sprite trace

1 Cache Size II LRU I LRU-2 I 2Q I LRFU 1
(blocks)

(b) DB2

time.

4.2 Effects of X on the performance of the LRFU policy

Fig. 8 shows the effect of X on the hit rate for various cache
sizes. All the figures in Fig. 8 have similar shapes. The hit
rate initially increases as the X value increases, that is, as the
policy moves from the LFU extreme to the LRU extreme.
After reaching a peak point, the hit rate drops slightly and
then remains stable, decreasing very slowly until X reaches
1. It can also be noted that as the cache size increases the
peak hit rate is reached at a smaller X value. This rather
enlightening result indicates that as the cache size increases
(which is the current trend) more weight must be given to
older references, and that deciding the block to be replaced
must not be made in a near-sighted manner. This result can
also be used to determine an appropriate X value for a given
system configuration.

5 A Couple of Practical issues

We have, thus far, provided a solid theoretical framework re-
garding the existence of a spectrum of policies that subsumes
the LRU and LFU policies as well as a simulation-based eval-
uation of its performance. In this section, we briefly discuss
issues in regards to actual deployment of the LRFU. The
first is its actual integration into an existing operating sys-
tem and the second is the self-adaptation of the X value.
The findings presented here are only preliminary and thus,
our presentation is also concise.

5.1 integration into the FreeBSD operating system

The LRFU policy was integrated into the FreeBSD operat-
ing system running on a Pentium PC. The LRU list within
the FreeBSD that maintains the blocks based on their re-
cency was replaced by the LRFU policy implemented as
a linked list and a heap. For benchmarking purposes, we
used the SPEC SDET benchmark [8] that simulates a multi-
programming environment. The benchmark consists of about
150 UNIX commands including spell, nro#, dig, make, and
find. The benchmark was run three times and the results
were averaged.

Fig. 9(a) shows the buffer cache hit rates of the SPEC
SDET for various cache sizes as X increases from 0 to 1.
Since the working set size of the SDET benchmark is rela-
tively small, the hit rates are very high for all cache sizes.
However, we still observe that the peak of the LRFU out-
performs the LRU (represented by LRFU with X = 1). Note
that the X value that gives the peak hit rate moves to the
LFU extreme as the cache size increases, which is consistent
with the simulation results in Section 4. Fig. 9(b) gives the
SDET throughput (scripts/hour) for the original FreeBSD
LRU policy and the new LRFU implementation, which is
calculated from the execution times of various commands in
the benchmark and thus, takes into account overheads as-
sociated with each implementation. The results show that
even a slight increase in the hit rate, as shown in Fig. 9(a),
results in a considerable improvement on the throughput
due to the huge penalty of physical disk I/OS. For exam-
ple, when the cache size is 100 blocks, the hit rate difference
between the LRU and the LRFU is less than 0.5% but this
leads to more than a 4% difference in throughput.

141

(a) Sprite trace: Client 54 (b) DB2 (c) OLTP

Figure 8: Effects of X on the LRFU policy using Sprite and database traces.

5.2 Self-adapting X value

As the X value influences the performance of the LRFU pol-
icy, this gives rise to a need for a mechanism that dynami-
calIy adjusts this value according to the workload evolution
such that the best performance results.

(a) Hit Rates

(b) Throughputs (scripts/hour)

Figure 9: Performance of LRFU integrated into the
FreeBSD operating system using the SPEC SDET bench-
mark: (a) The hit rates for various cache sizes and X values
and (b) the comparison of throughputs for the LRU and
LRFU policies.

In this subsection, we make a preliminary attempt to
address that issue by periodically adjusting X depending on
whether the hit rate has improved during the last period.
For example, if the hit rate of period d is better than that of
period i - 1 and the X value for period i is larger (smaller)
than the X value for period i - 1, the X value is incremented
(decremented). On the other hand, if the hit rate of period
i is worse than that of period i - 1 and the X value for pe-
riod i is larger (smaller) than the X value for period i - 1,
the X value is decremented (incremented). However, a prob-
lem with this simplistic approach is that the improvement
(degradation) of the hit rate may result from better (worse)

Table 2: Results of the adaptive LRFU policy.

Cache LRU LRFU Adaptive
Size (Non-adaptive) LRFU

(a) Client workstation 54 in the Sprite trace

1 Cache I LRU I LRFU 1 Adaptive 1

7000 0.7809 0.7962 0.7815
8000 0.7885 0.8024 0.7951
9000 0.7949 0.8068 0.7997

10000 0.8006 0.8107 0.8023
(b) DB2

locality of the workload rather than a better (worse) choice
of x.

To rectify this problem, we use the LRU policy as the
reference model to quantify how good (or bad) the locality
of the workload has been and adjust X according to the
hit rate imnrovement (deeradation) of the LRFU relative

1 \ ” ,

to that of the LRU. In other words, if
hit;RFU-h,tf~lFu

hit:m?~FU
is

greater than or equal to
hitfRU-hitf~l”

hit fin”
(where hit: is the

hit rate of policy X during period i), the X value for period
i + 1 is updated in the same direction as it has been for
periods i - 1 and i. Otherwise, the direction is reversed. In
both cases, the increment (decrement) of X depends on the X

value for period i and is given by lo 10 . For example,
if the X value is 0.003, the increment (decrement) is 0.001,
and if the current X value is 0.1, the increment (decrement)

142

is 0.01. We refer to this dynamic version of LRFU as the
adaptive LRFU.

Table 2 compares the adaptive LRFU with the non-adaptive
LRFU and the LRU for the Sprite client 54 trace (which
has the largest number of references among the three Sprite
traces) and the DB2 trace. Note that we consider only the
non-adaptive LRFU and the LRU for this comparison since
the other policies discussed in Section 4 have their own con-
trol parameters that require tuning. In all the experiments,
the initial X value is set to 0.0001 and the period to 10,000
references.

The results show that the adaptive LRFU consistently
outperforms the LRU. The results however also show that
there is still a performance gap between the adaptive LRFU
and the non-adaptive LRFU. We think that the performance
gap results mainly from the following three factors. First,
the X value converges to its optimal value rather slowly.
Thus, there is always a difference between the true optimal
X value for the period and the one actually used. Second,
since the current method uses only the LRU as its reference
model, its prediction about the locality of the workload is
inaccurate when the workload follows the independent ref-
erence model [9] rather than the LRU stack model [lo], and
this inaccuracy is expected to be more profound at larger
cache sizes. Finally, the traces used are relatively short to
observe the long term behavior of the adaptive LRFU. We
think that the policy explained in this subsection is just a
first step to a truly adaptive LRFU policy and that much
research is still needed towards this direction.

6 Conclusion

In this paper, we have shown that there exists a spectrum of
policies that subsumes the well-known LRU and LFU poli-
cies, in the form of the LRFU (Least Recently/Frequently
Used) block replacement policy. The LRFU policy provides
a spectrum of policies using a weighing function F’(z) =

(f)“” where X is a controllable parameter. The X value de-
termines the weights given to recent and old history thereby
providing grounds for an optimal combination of the effects
of recency and frequency factors of past references on the
likelihood of future re-reference.

Unlike previous policies that consider only limited refer-
ence history in their replacement decision, the LRFU policy
uses all the reference history of blocks. We showed that this
can be achieved with only a few words for each block. We
also showed that the LRFU allows for an efficient implemen-
tation whose time complexity ranges from O(1) to O(log, n)
depending on the value of X where n is the number of blocks
in the buffer cache. These time complexities correspond to
the time complexities of the native implementations of the
LRU and LFU policies. Finally, we provided a preliminary
investigation of practical issues such as actual deployment
in a real operating system and the adaptive LRFU where
the value of the control parameter X changes periodically as
the workload evolves.

Results from trace-driven simulations showed that the
LRFU policy performs better than the LRU, LRU-2, and
2Q policies for the workloads considered and the results were
reinforced by benchmark results from our implementation in
the FreeBSD operating system. The results also revealed the
following two performance effects of the controllable param-
eter X. First, as the X value increases, the hit rate initially
increases, reaches a peak, and drops slightly after the peak.
Second, as the cache size increases, the peak hit rate is ob-
tained at a smaller X value. This suggests that more weight

should be given to older references for larger caches.
One direction for future research is to develop a program

reference model related to the LRFU policy. An example of
such a reference model is one that has X as its parameter
and leads to the optimal performance under the LRFU with
the corresponding X value like the LRU stack model [lo]
for the LRU and the independent reference model [9] for
the LFU. Another research direction is to improve on the
adaptive LRFU presented in Section 5. Finally, applying
our concept of combining recency and frequency to page and
data placement and migration in distributed systems with
a hierarchy of buffer caches is also a direction for future
research.

Acknowledgment and Dedication

We would like to thank Gerhard Weikum, Theodore John-
son, and Pei Cao for providing us with traces as well as
useful information regarding the experiments. Many thanks
goes to the reviewers who provided enlightening comments.

We dedicate this paper to Jong-Hun Kim, a former stu-
dent at Seoul National University, who, so suddenly, passed
away early last year. Jong-Hun was an active participant
in this research, and yet, did not have the chance to see its
results published. We all miss his company.

References

PI

PI

131

PI

151

P31

E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-
K Page Replacement Algorithm For Database Disk
Buffering,” in Proceedings of the 1993 ACM SIGMOD
Conference, pp. 297-306, 1993.

J. T. Robinson and N. V. Devarakonda, “Data Cache
Management Using Frequency-Based Replacement,” in
Proceedings of the 1990 ACM SIGMETRICS Confer-
ence, pp. 134-142, 1990.

T. Johnson and D. Shasha, “2Q: A Low Overhead High
Performance Buffer Management Replacement Algo-
rithm,” in Proceedings of the 20th International Con-
ference on Very Large Data Bases, pp. 439-450, 1994.

W. Effelsberg and T. Haerder, “Principles of Database
Buffer Management,” ACM Transactions on Database
Systems, vol. 9, no. 4, pp. 560-595, 1984.

C. Faloutsos, R. Ng, and T. Sellis, “Flexible and Adapt-
able Buffer Management Techniques for Database Man-
agement Systems,” IEEE Transactions on Computers,
vol. 44, no. 4, pp. 546-560, 1995.

P. Cao, E. W. Felten, and K. Li, “Application-
Controlled File Caching Policies,” in Proceedings of the
Summer 1994 USENIX Conference, pp. 171-182, 1994.

M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W.
Shirriff, and J. K. Ousterhout, “Measurements of a Dis-
tributed File System,” in Proceedings of the 13th ACM
Symposium on Operating Systems Principles, pp. 198-
212, 1991.

SPEC, “SPEC SDM Release 1.1,” Mar. 1992.

G. S. Gao, “Performance Analysis of Cache Memories,”
Journal of ACM, vol. 25, no. 3, pp. 378-395, July 1978.

J. R. Spirn, Program Behavior: Models and Measure-
ments. Elsevier North-Holland, NY, 1977.

143

