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We show that there exists a spectrum of block replacement 
policies that subsumes both the Least Recently Used (LRU) 
and the Least Frequently Used (LFU) policies. The spec- 
trum is formed according to how much more weight we give 
to the recent history than to the older history, and is re- 
ferred to as the LRFU (Least Recently/Frequently Used) 
policy. Unlike many previous policies that use limited his- 
tory to make block replacement decisions, the LRFU policy 
uses the complete reference history of blocks recorded dur- 
ing their cache residency. Nevertheless, the LRFU requires 
only a few words for each block to maintain such history. 
This paper also describes an implementation of the LRFU 
that again subsumes the LRU and LFU implementations. 
The LRFU policy is applied to buffer caching, and results 
from trace-driven simulations show that the LRFU performs 
better than previously known policies for the workloads we 
considered. This point is reinforced by results from our in- 
tegration of the LRFU into the FreeBSD operating system. 

1 introduction 

The Least Recently Used (LRU) and the Least Frequently 
Used (LFU) block replacement policies are popular cache 
block replacement policies due to their simplicity and effi- 
ciency. In this paper, we show that between these seemingly 
independent two policies, there exists a spectrum of policies 
that subsumes these two policies. This spectrum of policies, 
which we refer to as the Least Recently/Frequently Used 
(LRFU) policy, inherits the benefits of the two policies re- 
sulting in a policy that is superior to both as well as other 
policies that have been previously suggested [l, 2, 31. In 
the remainder of this section, we first give the motivation 
behind the development of the LRFU policy in the buffer 
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caching realm. In so doing, we discuss some qualities that 
merit the LRFU policy over other policies. Then, we review 
some of the previous policies that have been proposed for 
buffer caching. 

1.1 Motivation 

The study of cache block replacement policies is, in essence, 
a study of the characteristics or behavior of workloads to a 
system. Specifically, it is a study of access patterns to blocks 
within the cache. Based on the recognition of access patterns 
through acquisition and analysis of past behavior or history, 
replacement policies resolve to identify the block that will 
be used furthest down in the future, so that that block may 
be replaced when needed. The LRU policy does this by at- 
taining the recency of block references while the LFU policy 
considers the frequency of block references. These respec- 
tive policies are inherently assuming that future behavior 
of the workload will be dominated by the recency or fre- 
quency factors of past behavior. Similarly, most previously 
proposed policies can also be placed in either category dif- 
fering only in aspects of how much history to use and how to 
use this information [I, 2, 31. Furthermore, for each policy, 
the rules for acquiring and analyzing the history are fixed 
for all workloads and system configurations. We discuss in 
the following why this is not sufficient, and that for various 
stages of system activity and configurations the acquisition 
of history and its analysis must also adequately adapt. 

Consider the graphs in Fig. 1. These graphs show the 
influence of the recency and frequency factors of past ref- 
erences on the likelihood of future references. The z-axis 
is the recency factor and the y-axis the frequency factor, 
and the shades of each graph shows the probability of being 
re-referenced (the darker the shades, the higher the prob- 
ability) for blocks with a particular recency and frequency 
value. The recency factor refers to the time uni.ts passed 
since its last reference, while the frequency is the number of 
references made to the block since its inclusion to the cache. 
For example, consider in Fig. l(a), a block with frequency 
count of 10 and which was referenced 50 time units in the 
past (denoted by the ‘x’ mark). The graph shows that this 
block has roughly a 25% chance of being re-referenced before 
being replaced. 

All of these graphs were obtained based on the off-line 
optimal algorithm for various cache sizes using a real-life 
trace, specifically the DB2 trace [3]. Details regarding this 
trace are given in Section 4. 
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(a) Cache Size 20 

(c) Cache Size 200 (d) Cache Size 500 

Figure 1: Change in the influence of recency and frequency factors on the probability of re-reference as cache size changes. 

Note from the graphs in the figure that as the cache 
size changes the shading pattern gradually changes as well. 
When the cache size is small the darker shades run along 
the vertical y-axis meaning that the recency aspect of past 
behavior is much more important than the frequency as- 
pect, hence policies such as the LRU or some variant of it 
should be used. However, as the cache size becomes large, 
much of the darker shadings (that is, higher probability of 
re-reference) are on the top of the graphs running along 
the horizontal z-axis. This means that the frequency as- 
pect is now more important than the recency aspect, hence 
appropriate policies reflecting this change must be used to 
hold in the cache those blocks that are more likely to be 
re-referenced. 

This observation tells us that the best policy would be 
that which adequately incorporates the recency and fre- 
quency aspects according to the system configuration and 
workload. The LRFU is a policy that does so. The LRFU 
policy represents a spectrum of policies that lies between 
the LRU and LFU policies, subsuming both the LRU and 
LFU policies. Each policy within this spectrum represents 
a balance between the recency and frequency factors of past 

behavior, at one end considering only the recency aspect 
and at the other end considering only the frequency aspect. 
Furthermore, the LRFU policy uses the complete reference 
history of blocks recorded during their cache residency. Nev- 
ertheless, the policy requires only a few words for each block 
to maintain information about its past references. Its imple- 
mentation has a time complexity that ranges from O(1) to 
O(log, n) and again subsumes the LRU and LFU implemen- 
tations. The exact time complexity depends on how much 
more we weigh the recency over the frequency factor, which 
is controlled by a parameter. 

Before going into the details of the LRFU policy, a review 
of related works is given in the next subsection. 

1.2 Related works 

This subsection surveys the studies that aim to overcome 
the limitations of the LRU and LFU policies. Our discus- 
sion focuses on two recent papers, one by Robinson and 
Devarakonda [2] and the other by O’Neil et al. [l]. 

A frequency-based policy called the FBR (Frequency- 
based Replacement) was proposed by Robinson and De- 
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varakonda [2]. The difference between the FBR and the 
conventional LFU is that the former replaces blocks based 
on the frequency of references whose short-term locality has 
been factored out via a special buffer called a raeu, section [2]. 
The new section consists of k most recently referenced blocks 
where L is implementation dependent. When there is a hit 
to a block in the new section, the corresponding reference 
is considered to be correlated to a previous reference to the 
same block and the reference count of the block is not in- 
cremented. This is motivated by the observation that the 
reference count that increments on every reference can be 
misleading and the modified reference count is a more ac- 
curate indicator of the probability that the block will be 
re-referenced in the near future. Through simulation stud- 
ies, it is shown that the FBR outperforms the LRU for the 
workloads that were considered [a]. 

O’Neil et al. present the LRU-K replacement policy that 
bases its replacement decision on the time of the Kth-to-last 
reference to the block [I]. In other words, its replacement 
decision is based on the reference density [4] observed dur- 
ing the past h’ references. Thus, when K is large, it can 
discriminate well between frequently and infrequently refer- 
enced blocks. On the other hand, when K is small, it can 
remove cold blocks quickly since such blocks would have a 
wider span between the current time and the h’th-to-last 
reference time. 

However, the LRU-K ignores the recency of the h’ - 1 
references, and considers only the distance of the Rth refer- 
ence. This violates the rule of thumb that the more recent 
behavior predicts the future better. For example, assume 
that (7, 31, 35) and (7, 9, 25) are the reference histories 
of blocks a and b, respectively. Then, LRU-3 would treat 
both blocks equally since their third-to-last reference times 
are the same (that is, 7) although, intuitively, block a is 
more likely to be referenced in the near future since its last 
and second-to-last references are more recent. For this rea- 
son, the LRU-K is not very adaptive to changing workloads 
when K is large. Also, it incurs an O(K) space overhead to 
keep the history of the last K references, though it is noted 
that a large K value may not be necessary in practice [l]. 
Further, since the LRU-K requires that all of the last h’ ref- 
erence times of each block be maintained, blocks that have 
not acquired all its K reference history must be handled as 
special cases. If the history of a block is not saved when 
the block is replaced from the buffer cache, a considerable 
length of time may be needed to reacquire its history, and in 
some cases, it may be replaced again before acquiring all the 
li reference times. To cope with this problem, the LRU-K 
maintains the history of a block for an extended period of 
time after the block is replaced from the buffer cache. 

As previously mentioned, one advantage of the LRU-K 
is that it can quickly remove cold blocks from the buffer 
cache when K is small. Johnson and Shasha propose a 
block replacement policy called 2Q starting from a similar 
motivation [3]. In this approach, a missed block is initially 
placed in a special buffer called the Al queue. A block in 
the Al queue is promoted to the main buffer cache only 
when it is re-referenced while in the Al queue. Otherwise, 
it is replaced when it becomes the LRU block in the Al 
queue. This allows cold blocks to be removed quickly from 
the buffer cache as in the LRU-K. The time complexity of 
the 2Q policy is O(l), which is significantly lower than the 
O(log, n) time complexity of the LRU-K policy. 

Buffer management schemes have also been extensively 
studied in the database arena [5] (also see the references 
therein). However, many of its algorithms make use of in- 

formation deduced from query optimizer plans. Another 
similar approach that exploits external information is the 
application-controlled file caching scheme [6]. These schemes 
are promising approaches but are beyond the scope of this 
paper. 

1.3 The Remainder of the Paper 

The remainder of this paper is organized as follows. In Sec- 
tion 2, we describe the LRFU policy in detail. Its implemen- 
tation is discussed in Section 3. In Section 4, we compare 
the performance of the LRFU policy with those of previ- 
ous policies through trace-driven simulations. In Section 5, 
we discuss a couple of practical issues, namely its actual de- 
ployment in a real operating system and the extension of the 
policy where the parameter of the LRFU is changed period- 
ically according to workload evolution. Finally, we conclude 
this paper in Section 6. 

2 The least Recently/Frequently Used (LRFU) policy 

The LRFU policy associates a value with each block. This 
value is called the CRF (Combined Recency and Frequency) 
value and quantifies the likelihood that the block will be ref- 
erenced in the near future. Each reference to a block in the 
past contributes to this value and a reference’s contribution 
is determined by a weighing function F(z) where 2 is the 
time span from the reference in the past to the current time. 
For example, assume that block b was referenced at times 1, 
2, 5, and 8 and that the current time (t,) is 10. Then, its 
CRF value at tc, denoted by G,(b), is computed as 

C&(b) = F(lO - 1) + F(l0 - 2) 

+ F(10 - 5) + F(lO - 8) 

= F(9) + F(8) + F(5) + F(2). 

F(Z) essentially reflects the influence of the recency and fre- 
quency factors of a block’s history in projecting the likeli- 
hood of it being re-referenced. In general, 7(z) is a decreas- 
ing function to give more weight to more recent references. 
Therefore, a reference’s contribution to the CRF value is 
proportional to the recency of the reference. We define the 
CRF value of a block more formally as follows. 

Definition 1 Assume that the system time can be repre- 
sented by an integer value and that at most one block may 
be referenced at any one time. The CRF value of a block b 
at time &se, denohted by Ctbass(b), is defined as 

Ctbose (b) = 2 F(tbase - tb,) 

where 7(x) is a &tghing function and {i&, tbz,. . . , tbk} are 
the reference times of block b and tbI < tbz < .” < tb,, 5 
tbase- 

The proposed LRFU policy replaces the block with the 
minimum CRF value. This policy differs from the LFU pol- 
icy in that the contribution of each reference is not always 
the same but depends on its recency. The policy also differs 
from the LRU policy in that it considers not only the most 
recent reference but also possibly all the other references in 
the past. 

Intuitively, if F(x) = 1 for all 2, then the CRF value 
degenerates to the reference count. Thus, the LRFU policy 
with F’(z) = 1 is simply the LFU policy. 

Property 1 If F’(z) = c for all x where c is a constant, 
then the LRFU policy replaces the same block as the LFU 
policy. 
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Figure 2: Spectrum of LRFU according to the function 
F(x) = (g= where x is (current-time - reference-time). 

To show that the LRFU policy also subsumes the LRU 
policy, we give an example of 7(z) that makes the LRFU 
policy replace the same block as the LRU policy. Assume 
that block a was most recently referenced at time t and that 
another block b was referenced at every time step starting 
from time 0 but its most recent reference was made at time 
t - 1. The LRU policy will replace block b in favor of block a 
although block b has been referenced many more times than 
block a. For the LRFU policy to mimic this behavior, the 
CRF value of a must be larger than that of b at current time 
t,, i.e., C,,(a) = F(t, - t) > C,,(b) = c:;.O 7(t, - t’). By 
generalizing the above condition, we have the following. 

Property 2 1f T(z) satisfies the following condition, then 
the LRFU policy replaces the same block as the LRU policy. 

vi F(i) > 2 F(j) for any k where k 2 i + 1 
j=i+l 

A class of functions that satisfy both Property 1 and Prop- 
erty 2 is F(z) = (k)‘, where p > 2 and X ranges from 0 to 
1. This class of functions where p = 2 is shown in Fig. 2. 
An intuitive meaning of X in this function is that a block’s 
CRF value is reduced to $ of the original value after every 

+ time steps. For example, if X is 0.0001, a block’s CRF 
value is reduced to $ after every 10000 time steps. This 
control parameter X allows a trade-off between recency and 
frequency. In addition, this function has the property that it 
gives more weight to more recent references, which is consis- 
tent with the principle of temporal locality. As X approaches 
0, the LRFU policy moves towards a frequency-based policy. 
Eventually, when X is equal to 0 (i.e., F(z) = l), the LRFU 
policy is simply the LFU policy. On the other hand, as X 
approaches 1, the LRFU policy moves towards a recency- 
based policy, and when X is equal to 1 (i.e., F(r) = (i)= 
for p 1 2), the LRFU policy degenerates to the LRU pohcy. 
(Note that F(z) = (i)” for p 1 2 satisfies Property 2.) The 
spectrum (Recency/Frequency) in Fig. 2 is where the LRFU 
policy differs from both LFU and LRU, assuming p = 2. 

3 Implementation of the LRFU policy 

From the description of the LRFU policy in the previous sec- 
tion, one can observe that all history of a block is retained 
and that the CRF values must constantly be updated. As 
is, the LRFU policy is unimplementable, and for the LRFU 
policy to be of any practical value these issues must be rec- 
tified. 

3.1 Maintaining all reference history 

In general, computing the CRF value of a block requires 
that the reference times of all the past references to that 
block be maintained. This obviously requires unbounded 
memory and thus, makes the policy unimplementable. We 
show in the following that if the weighing function F’(z) has 
either the Y=(z + y) = 7(z)T(y) or F(z + y) = 7(z) +F(y) 
properties, the storage and computational overheads can be 
reduced drastically such that this policy becomes not only 
implementable but also efficient. For the remainder of the 
paper, we concentrate on the first property as the second 
can be handled analogously to the first one. 

Property 3 IjF(z + y) = T(z)F(y) for all 2: and y, then 
Ctbk (b) is derived from CtbkmI (b) as follows: 

Ctbk (b) = -j&s, - tb,) 

i=l 

k-l 

= .T(tbk - tbk) + c F(tb,, - tb,) 

i=l 

k-1 

= F(O) + c -T(tbk - tb,). 

t=l 

Let 6 be tbrc - tbLdI. 

k-l 

Ctbk (b) = F(o) + c F(tbk - tb,) 

i=l 

k-l 

= F(o)+ xF(6+tb,-, -h) 

i=l 

k-l 

= F(o) + c F(+?tb,-, - tb,) 

i=l 

k-l 

= J=(O) + F(S) C F(tbk-x - tbi) 

i=l 

= W’) + WW,k-l @I. 

Property 3 states that if F(z+y) = F(z)F(y) then the CRF 
value at the time of the Kth reference can be computed from 
the time of the (K - 1)th reference and the CRF value at 
that time. Similar derivation shows that Ct,(b), which is the 
CRF value of block b at current time t,, can be computed 
by multiplying F(6) and Ctbk (b) where 6 = t, - tbk. This 
shows that, at any time, the CRF value can be computed 
using only two variables for each block, and these are all the 
history the block needs to maintain. Note that the function 
7(z) = (f)“” for p 2 2 explained in the previous section 
has the 7(z + y) = F(z)7(y) property. 

3.2 Keeping the CRF values in order 

As the LRFU policy replaces the block with the minimum 
CRF value, it is necessary that the blocks be ordered accord- 
ing to their CRF values. Generally, however, a reference’s 
contribution to the CRF values changes over time, hence, 
the CRF value of a block changes with time as well. This 
requires that the CRF value of every block be updated at 
each time step and that blocks be reordered according to the 
new CRF values again at each time step. Fortunately, with 
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1. if b is already in the buffer cache 
2. then 
3. CRFt,,t(b) = F(o) + F(tc - LAST(b)) * CRFu(b) 
4. LAST(b) = t, 
5. Restore(H, b) 
6. else 
7. fetch the missed block from the disk 
8. CRFta..r(b) = F(O) 
9. LAST(bj k t, 
10. victim = ReplaceR.oot(H, b) 
11. if victim is dirty 
12 then 
13. write-back the viedim to the disk 
14. fi 
15. fI 
16. - -- 
17. Restore(H, b) 
18 if b is not a leaf node 
19. then 
20. let smaller be the child that has the 
20(c&). smaller CRF value at the current time 
21. if F(t, - LAST(b)) * CRFz,.t(b) 
2l(cont). > F(t, - LAST(smaller)) * CRF,,,~(smaller) 
22. then 
23. swap(H, b, smaller) 
24. Restore(H, smaller) 
25. tl 
26. fi 
27. end Restore 
28. --- 
29. ReplaceRoot(H, b) 
30. victim = H.root 
31. H.root = b 
32. Restore(H, b) 
33. return victim 
34. end ReplaceRoot 
35. - _-__-- 

Figure 3: Buffer cache management algorithm. 

F(z) = (b)‘, for p 2 2, the relative ordering between two 
blocks does not change until either of them is referenced, 
hence reordering of blocks is needed only upon a block ref- 
erence. We prove this in the following. 

Property 4 With F(z) = (k)‘% jorp > 2, if&(a) > G(b) 

and neither a nor b has been referenced after t, then C,I (u) > 
C,/(b) for all 1’ 2 t. 

Proof. Let 6 = t’ - t. Since F(z + y) = F(z)F(y), we 
have C,,(a) = 7(6)&(a) and C,,(b) = 7(6)&(b). Also, since 
F(z) > 0 for all z and &(a) > G(6), the following inequality 
holds C,,(a) = ?(G)&(a) > 5=(S)Ct(b) = C,,(b). 0 

We have presented, thus far, F(z) = (;)“I for any p 2 2, 

to be an adequate weighing function for the LRFU policy. 
For the remainder of this paper, we concentrate only on the 
weighing function 3-(z) = (i)‘, as its range covering both- 
the LFU and LRU is between b and 1, which is common in 
other studies that involve control parameters. 

3.3 The Algorithm 

The algorithm that is invoked upon a block reference is given 
in Fig. 3. 

Like many other replacement algorithms that base their 
decision on the ordering of blocks by a given criterion, the 
LRFU uses the heap data structure to maintain the ordering 
of blocks according to their CRF values (the root has the 
smallest CRF value). In the algorithm in Fig. 3, H is the 

heap data structure, tc is the current time and LAST(b) and 
CRFlast(b) are the time of the last reference to block b and 
its CRF value at that time, respectively. The algorithm first 
checks whether the requested block b is in the buffer cache. 
If it is, the algorithm recalculates its CRF value, updates 
the time of the last reference, and, if needed, restores the 
heap property of the sub-heap rooted by b. In the other 
case where the block is not in the buffer cache, the missed 
block is fetched from disk and its CRF value and the time 
of the last reference are initialized. Then, the root block of 
the heap is replaced with the newly fetched block and the 
heap property is restored. In addition, if the replaced block 
is dirty, it is written-back to the disk. 

As in other replacement algorithms that use the heap 
data structure, in the LRFU the maximum number of swap 
operations is equal to the height of the heap minus one, i.e., 
[log,(n+l)l- 1. The only additional overhead of the LRFU 
over other policies is due to the invocations of F(z) when 
CRF values are compared, the maximum number of which 
is bounded above by 2 x ([log,(n + 1)1 - 1) since F(X) is 
invoked twice at each level of the heap. 

3.4 Optimized Implementation of the LRFU policy 

The O(log, n) time complexity of the LRFU policy is com- 
parable to that of the LFU policy. However, this time com- 
plexity is considerably higher than the O(1) time complexity 
of the LRU policy, which is simply the LRFU policy with 
X = 1. In the following, we show that the LRFU policy 
with F(z) = (3)“” also lends itself to a spectrum of im- 
plementations whose time complexities depend on the value 
of X. In this implementation spectrum, the points corre- 
sponding to the LFU and the LRU have O(log, n) and O(1) 
time complexities, respectively, which are equal to the time 
complexities of their native implementations. 

Property 5 In the LRFU policy with F(x) = (i)‘=, there 
exists a threshold distance dthr.+&d such that 

V d>d threshold, F(O) > -p(i). 

t=d 

In partiCuhr, the T?Z~n~?rHI~ Of SUCh dthresh&i VCdueS iS given 

kp-(+P) 

bf a 1. 

Proof. Let d’ be such a&,.,&&&. Then, d’ should satisfy 

F(0) = 1 > J+(i) 
kd’ 

= (;,ad’ + +)W’tl) + +)*(d’tZ) + . . . 

= (;)“d’(l+(;)h+(;)sX+...) 

= (;Yd’cj-+ 
2 

Multiplying both sides by 1 - (i)“, we have 

* l- (;)A > ($Xd 

Taking log+ on both sides, we have 

===+ l%# - (f)“) < Xd’ 

Finally, simplifying this equation then gives 

===+ d’>[ 
log;(l- (f)“) 

x 10 
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This property states that a. block whose most recent refer- 
ence was made earlier than dthrechold time units ago cannot 
have a CRF value larger than F(O), which is the CRF value 
of the currently referenced block. Conversely, for a block 
to have a CRF value larger than 3(O), its most recent ref- 
erence must have been made within dthresh& time units. 
This states that the number of blocks that have CRF val- 
ues larger than F(O) is bounded above by dth,.&,&. Hence, 
we maintain dthreohold blocks in the heap and the remaining 
blocks in a linked list such that any block maintained in the 
heap has a larger CRF value than that of any block in the 
linked list. With this setting, the CRF value of the blocks 
in the linked list cannot be larger than F(O) since the num- 
ber of blocks that can have CRF values larger than F(0) 
is bounded above by dthreshold and the number of blocks 
maintained in the heap is dthreshold. 

The optimized LRFU implementation operates as fol- 
lows. When the requested block is not in the buffer cache, 
the block at the tail of the linked list is replaced and the 
block at the root of the heap is demoted to the head of the 
linked list (cf. Fig. 4(a)). Then, the currently requested 
block, which has F(O) as its CRF value, becomes the new 
root of the heap and the restore operation is performed on 
the heap with time complexity o(log, dthreshold). Further, 
the assertions that the CRF value of the blocks in the heap 
is larger than that of the blocks in the linked list and that 
the CRF value of the blocks in the linked list is smaller than 
3(O) are maintained. 

The other case where the requested block is in the buffer 
cache can further be divided into two cases depending on 
whether the currently referenced block is in the heap or in 
the linked list. First, consider the case where the currently 
requested block is in the heap. Here, the restore operation 
needs to be performed only for the sub-heap rooted by the 
currently requested block (cf. Fig. 4(b)). In the other case 
where the currently requested block is in the linked list, 
the block corresponding to the root of the heap is demoted 
to the head of the linked list and the currently requested 
block becomes the new root (cf. Fig. 4(c)). Then, the re- 
store operation is performed on the entire heap. The time 
complexity for both cases is o(log, dthreshold) and the two 
assertions are maintained. In summary, for all the cases the 
time complexity of the optimized LRFU implementation is 
o(lO& dthreshold). 

On the LRU extreme of this optimized LRFU imple- 
mentation (i.e., when x = l), dthreshold, which is given by 
,logl(l-(+)i) 

1, is equal to 1. Thus, only one block needs to 
be maiitained in the heap. This implies that all the blocks 
in the buffer cache can be maintained by a single linked 
list. This corresponds to the native LRU implementation 
and its time complexity is O(1). On the other hand, as we 

move towards the LFU extreme, the number of blocks that 
should be maintained in the heap increases. Eventually, on 
the LFU extreme (i.e., when x = 0), dthreshold is equal to 00 
and, thus, every block should be maintained in the heap. As 
a result, the time complexity becomes O(log, n). This again 
coincides with the time complexity and the data structure of 
the native LFU implementation. Fig. 5 shows the spectrum 
of the LRFU implementations. 

4 Experimental results 

In this section, we discuss the results from trace-driven simu- 
lations performed to assess the effectiveness of the proposed 
LRFU policy. We used two different types of real workload 
traces: file system traces from the Sprite network file sys- 
tem [7] and database traces that consist of the DB2 trace 
used by Johnson and Shasha [3] and the OLTP trace used 
by both O’Neil et al. [l] and Johnson and Shasha [3]. 

The Sprite trace contains requests to a file server from 
client workstations for a two-day period. Among the client 
workstations, we selected three with the most requests (client 
workstations 54, 53 and 48) and simulated their buffer caches. 
Client workstation 54 made 203,808 references to 4,822 unique 
blocks, client workstation 53 made 141,223 references to 
19,990 unique blocks, and client workstation 48 made 133,996 
references to 7,075 unique blocks where the block size is 4 
Kbytes. For all the three traces, no client caching was 
assumed in order to acquire the complete record of block 
references. Readers are referred to the paper by Baker et al. 
[7] for more details regarding the Sprite trace. 

The DB2 trace was obtained from a commercial installa- 
tion of DB2 and contains 500,000 references to 75,514 unique 
blocks [3]. The OLTP trace contains references to a CODA- 
SYL database for a one-hour period. This trace consists of 
914,145 references to 186,880 unique blocks [I]. 

The performance of the LRFU policy is compared with 
those of the LRU, LRU-2, and 2Q policies. In the simu.la- 
tion, we used the weighing function 7(z) = (i)“” explained 
in Section 3. For the 2Q and LRFU policies, the choice of 
parameters, specifically, the length of the Al queue and the 
X values, respectively, influence the performance of the poli- 
cies. For our experiments, the length of the Al queue was 
based on the suggestions of the authors [3], and among these 
results, the best ones are reported. Likewise for the LRFU, 
we report the best findings of the experiments. For all the 
policies, we factored out the references that were correlated 
with prior references as described in [2]. 

4.1 Comparison of the LRFU policy with other policies 

Figs. 6 and 7 show the hit rates of the LRFU policy as a 
function of the cache size for the Sprite and database traces, 
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Figure 5: Spectrum of the LRFU implementations. 

respectively. Note that the y-axis does not start from 0 and 
that the scales are different for each of the figures. This 
arrangement is intended to show clearly the relative perfor- 
mance of the policies. 

In the figures, for most cases, the LRFU policy performs 
best, while the LRU-2 and 2Q policies show similar perfor- 
mance, giving and taking at particular cache sizes. The 2Q 
policy performs strongly when the cache size is small, oc- 
casionally performing better than the LRFU policy. (The 
reason behind this is explained below.) However, its hit 
rate starts to converge early, that is, at a smaller cache size, 
than other policies. As was shown in earlier results, the 
LRU policy performs the worst [l, 31. However, it performs 
reasonably well when the cache size is large. 

Experiments were performed with increasing cache sizes 
until there was less than 1% change for all policies. The 
corresponding cache size ranges, when this is observed, differ 
widely depending on the locality of the workload represented 
by the trace; for the Sprite trace of client 54 its range is 
over f of the footprint (3000 blocks vs. 4822 unique blocks 
in the trace); on the other hand, for the Sprite trace of 
client 48, it is below $ of the footprint (1000 blocks vs. 
7075 unique blocks in the trace). When the cache size is 
beyond the above range, only a few misses will occur due 
to the lack of cache space and the miss rate will largely be 
affected by cold start misses, i.e., misses that occur when 
blocks are referenced for the first time. After this point, 
bigger caches and better replacement policies will improve 
the performance marginally; only look-ahead schemes and 
larger block sizes will be helpful. 

When the cache size is small, the hit rates of the LRFU 
policy is only comparable to those of the LRU-2 and 2Q 
policies for the Sprite trace (client workstation 53) and the 
DB2 trace. The LRFU policy even performs worse than 
these policies for some cache sizes. This is because in our 
experiments the LRU-2 and 2Q policies retain the history 
of references even after the blocks are replaced from the 
buffer cache [3]. Thus, when the block is brought back into 
the buffer cache it starts with a good knowledge of its past 
behavior. However, we chose not to allow this for the LRFU 
policy as this is a better representation of the real world. 

After making these initial observations, we modified our 
simulation program so that the LRFU policy also retains the 
blocks’ past history (i.e., LAST(b) and CRJ’r,,t(b)) even 
after they are replaced as in the LRU-2 and 2Q policies. 
When this modification is made, the LRFU policy surpasses 
the LRU-2 and 2Q policies even for small cache sizes for 
client workstation 53 in the Sprite trace and the DB2 trace 
as can be seen in Table 1. 

For comparison purposes,, Figs. 6 and 7 also give the 
hit rate of the off-line optimal replacement policy, which 
replaces the block that will not be referenced for the longest 
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Figure 6: Comparison of LRFU with other policies using 
Sprite trace. 
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Figure 7: Comparison of LRFU with other policies using the database trace. 

Table 1: Comnarison of hit rates when historv is keot when 
the associated block is replaced for the LRFU as was done 
with the LRU-2 and 2Q policies. 

I Cache Size II LRU I LRU-2 I ZQ I LRFU 1 
(blocks) 

(a) Client workstation 53 in the Sprite trace 

1 Cache Size II LRU I LRU-2 I 2Q I LRFU 1 
(blocks) 

(b) DB2 

time. 

4.2 Effects of X on the performance of the LRFU policy 

Fig. 8 shows the effect of X on the hit rate for various cache 
sizes. All the figures in Fig. 8 have similar shapes. The hit 
rate initially increases as the X value increases, that is, as the 
policy moves from the LFU extreme to the LRU extreme. 
After reaching a peak point, the hit rate drops slightly and 
then remains stable, decreasing very slowly until X reaches 
1. It can also be noted that as the cache size increases the 
peak hit rate is reached at a smaller X value. This rather 
enlightening result indicates that as the cache size increases 
(which is the current trend) more weight must be given to 
older references, and that deciding the block to be replaced 
must not be made in a near-sighted manner. This result can 
also be used to determine an appropriate X value for a given 
system configuration. 

5 A Couple of Practical issues 

We have, thus far, provided a solid theoretical framework re- 
garding the existence of a spectrum of policies that subsumes 
the LRU and LFU policies as well as a simulation-based eval- 
uation of its performance. In this section, we briefly discuss 
issues in regards to actual deployment of the LRFU. The 
first is its actual integration into an existing operating sys- 
tem and the second is the self-adaptation of the X value. 
The findings presented here are only preliminary and thus, 
our presentation is also concise. 

5.1 integration into the FreeBSD operating system 

The LRFU policy was integrated into the FreeBSD operat- 
ing system running on a Pentium PC. The LRU list within 
the FreeBSD that maintains the blocks based on their re- 
cency was replaced by the LRFU policy implemented as 
a linked list and a heap. For benchmarking purposes, we 
used the SPEC SDET benchmark [8] that simulates a multi- 
programming environment. The benchmark consists of about 
150 UNIX commands including spell, nro#, dig, make, and 
find. The benchmark was run three times and the results 
were averaged. 

Fig. 9(a) shows the buffer cache hit rates of the SPEC 
SDET for various cache sizes as X increases from 0 to 1. 
Since the working set size of the SDET benchmark is rela- 
tively small, the hit rates are very high for all cache sizes. 
However, we still observe that the peak of the LRFU out- 
performs the LRU (represented by LRFU with X = 1). Note 
that the X value that gives the peak hit rate moves to the 
LFU extreme as the cache size increases, which is consistent 
with the simulation results in Section 4. Fig. 9(b) gives the 
SDET throughput (scripts/hour) for the original FreeBSD 
LRU policy and the new LRFU implementation, which is 
calculated from the execution times of various commands in 
the benchmark and thus, takes into account overheads as- 
sociated with each implementation. The results show that 
even a slight increase in the hit rate, as shown in Fig. 9(a), 
results in a considerable improvement on the throughput 
due to the huge penalty of physical disk I/OS. For exam- 
ple, when the cache size is 100 blocks, the hit rate difference 
between the LRU and the LRFU is less than 0.5% but this 
leads to more than a 4% difference in throughput. 
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Figure 8: Effects of X on the LRFU policy using Sprite and database traces. 

5.2 Self-adapting X value 

As the X value influences the performance of the LRFU pol- 
icy, this gives rise to a need for a mechanism that dynami- 
calIy adjusts this value according to the workload evolution 
such that the best performance results. 

(a) Hit Rates 

(b) Throughputs (scripts/hour) 

Figure 9: Performance of LRFU integrated into the 
FreeBSD operating system using the SPEC SDET bench- 
mark: (a) The hit rates for various cache sizes and X values 
and (b) the comparison of throughputs for the LRU and 
LRFU policies. 

In this subsection, we make a preliminary attempt to 
address that issue by periodically adjusting X depending on 
whether the hit rate has improved during the last period. 
For example, if the hit rate of period d is better than that of 
period i - 1 and the X value for period i is larger (smaller) 
than the X value for period i - 1, the X value is incremented 
(decremented). On the other hand, if the hit rate of period 
i is worse than that of period i - 1 and the X value for pe- 
riod i is larger (smaller) than the X value for period i - 1, 
the X value is decremented (incremented). However, a prob- 
lem with this simplistic approach is that the improvement 
(degradation) of the hit rate may result from better (worse) 

Table 2: Results of the adaptive LRFU policy. 

Cache LRU LRFU Adaptive 
Size (Non-adaptive) LRFU 

(a) Client workstation 54 in the Sprite trace 

1 Cache I LRU I LRFU 1 Adaptive 1 

7000 0.7809 0.7962 0.7815 
8000 0.7885 0.8024 0.7951 
9000 0.7949 0.8068 0.7997 

10000 0.8006 0.8107 0.8023 
(b) DB2 

locality of the workload rather than a better (worse) choice 
of x. 

To rectify this problem, we use the LRU policy as the 
reference model to quantify how good (or bad) the locality 
of the workload has been and adjust X according to the 
hit rate imnrovement (deeradation) of the LRFU relative 

1 \ ” , 

to that of the LRU. In other words, if 
hit;RFU-h,tf~lFu 

hit:m?~FU 
is 

greater than or equal to 
hitfRU-hitf~l” 

hit fin” 
(where hit: is the 

hit rate of policy X during period i), the X value for period 
i + 1 is updated in the same direction as it has been for 
periods i - 1 and i. Otherwise, the direction is reversed. In 
both cases, the increment (decrement) of X depends on the X 

value for period i and is given by lo 10 . For example, 
if the X value is 0.003, the increment (decrement) is 0.001, 
and if the current X value is 0.1, the increment (decrement) 
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is 0.01. We refer to this dynamic version of LRFU as the 
adaptive LRFU. 

Table 2 compares the adaptive LRFU with the non-adaptive 
LRFU and the LRU for the Sprite client 54 trace (which 
has the largest number of references among the three Sprite 
traces) and the DB2 trace. Note that we consider only the 
non-adaptive LRFU and the LRU for this comparison since 
the other policies discussed in Section 4 have their own con- 
trol parameters that require tuning. In all the experiments, 
the initial X value is set to 0.0001 and the period to 10,000 
references. 

The results show that the adaptive LRFU consistently 
outperforms the LRU. The results however also show that 
there is still a performance gap between the adaptive LRFU 
and the non-adaptive LRFU. We think that the performance 
gap results mainly from the following three factors. First, 
the X value converges to its optimal value rather slowly. 
Thus, there is always a difference between the true optimal 
X value for the period and the one actually used. Second, 
since the current method uses only the LRU as its reference 
model, its prediction about the locality of the workload is 
inaccurate when the workload follows the independent ref- 
erence model [9] rather than the LRU stack model [lo], and 
this inaccuracy is expected to be more profound at larger 
cache sizes. Finally, the traces used are relatively short to 
observe the long term behavior of the adaptive LRFU. We 
think that the policy explained in this subsection is just a 
first step to a truly adaptive LRFU policy and that much 
research is still needed towards this direction. 

6 Conclusion 

In this paper, we have shown that there exists a spectrum of 
policies that subsumes the well-known LRU and LFU poli- 
cies, in the form of the LRFU (Least Recently/Frequently 
Used) block replacement policy. The LRFU policy provides 
a spectrum of policies using a weighing function F’(z) = 

(f)“” where X is a controllable parameter. The X value de- 
termines the weights given to recent and old history thereby 
providing grounds for an optimal combination of the effects 
of recency and frequency factors of past references on the 
likelihood of future re-reference. 

Unlike previous policies that consider only limited refer- 
ence history in their replacement decision, the LRFU policy 
uses all the reference history of blocks. We showed that this 
can be achieved with only a few words for each block. We 
also showed that the LRFU allows for an efficient implemen- 
tation whose time complexity ranges from O(1) to O(log, n) 
depending on the value of X where n is the number of blocks 
in the buffer cache. These time complexities correspond to 
the time complexities of the native implementations of the 
LRU and LFU policies. Finally, we provided a preliminary 
investigation of practical issues such as actual deployment 
in a real operating system and the adaptive LRFU where 
the value of the control parameter X changes periodically as 
the workload evolves. 

Results from trace-driven simulations showed that the 
LRFU policy performs better than the LRU, LRU-2, and 
2Q policies for the workloads considered and the results were 
reinforced by benchmark results from our implementation in 
the FreeBSD operating system. The results also revealed the 
following two performance effects of the controllable param- 
eter X. First, as the X value increases, the hit rate initially 
increases, reaches a peak, and drops slightly after the peak. 
Second, as the cache size increases, the peak hit rate is ob- 
tained at a smaller X value. This suggests that more weight 

should be given to older references for larger caches. 
One direction for future research is to develop a program 

reference model related to the LRFU policy. An example of 
such a reference model is one that has X as its parameter 
and leads to the optimal performance under the LRFU with 
the corresponding X value like the LRU stack model [lo] 
for the LRU and the independent reference model [9] for 
the LFU. Another research direction is to improve on the 
adaptive LRFU presented in Section 5. Finally, applying 
our concept of combining recency and frequency to page and 
data placement and migration in distributed systems with 
a hierarchy of buffer caches is also a direction for future 
research. 
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