
EELRU: Simple and Effective Adaptive Page Replacement

Yannis Smaragdakis, Scott Kaplan, and Paul Wilson*
Department of Computer Sciences

University of Texas at Austin
{smaragd, sfkaplan, wilson}Qcs.utexas.edu

Abstract

Despite the many replacement algorithms proposed through-
out the years, approximations of Least Recently Used (LRU)
replacement are predominant in actual virtual memory man-
agement systems because of their simplicity and efficiency.
LRU, however, exhibits well-known performance problems
for regular access patterns over more pages than the main
memory can hold (e.g., large loops). In this paper we present
Early Eviction LRU (EELRU). EELRU is a simple adap-
tive replacement algorithm, which uses only the kind of
information needed by LRU-how recently each page has
been touched relative to the others. It exploits this infor-
mation more effectively than LRU, using a simple on-line
cost/benefit analysis to guide its replacement decisions. In
the very common situations where LRU is good, EELRU is
good because it behaves like LRU. In common worst cases
for LRU, EELRU is significantly better, and in fact close to
optimal as it opts to sacrifice some pages to allow others to
stay in memory longer. Overall, in its worst case, EELRU
cannot be more than a constant factor worse than LRU,
while LRU can be worse than EELRU by a factor almost
equal to the number of pages in memory.

In simulation experiments with a variety of programs and
wide ranges of memory sizes, we show that EELRU does in
fact outperform LRU, typically reducing misses by ten to
thirty percent, and occasionally by much more-sometimes
by a factor of two to ten. It rarely performs worse than
LRU, and then only by a small amount.

Overall, EELRU demonstrates several principles which
could be widely useful for adaptive page replacement al-
gorithms: (1) it adapts to changes in program behavior,
distinguishing important behavior characteristics for each
workload. In particular, EELRU is not affected by high-
frequency behavior (e.g., loops much smaller than the mem-
ory size) as such behavior may obscure important large-
scale regularities; (2) EELRU chooses pages to evict in a
way that respects both the memory size and the aggregate
memory-referencing behavior of the program; (3) depending

*This research was supported by IBM, Novell, and the National
Science Foundation (under Research Initiation Award CCR-9410026).

Permission to make digttal or hard copies of all or part of this work for
personal or classroom use is granted without fee provtded that
copa are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the fwst page
To copy otherwise, to republish, to post on servers or to
redistribute to ksts. requires prior speciftc permission and/or a fee.
SIGMETRICS ‘99 5/99 Atlanta, Georgia, USA
0 1999 ACM 1.58113.083.X/99/0004,.,55.00

on the aggregate memory-referencing behavior, EELRU can
be “fair” (like LRU) or “unfair”, selectively allowing some
pages to stay in memory longer while others are evicted.

1 Introduction and Overview

Modern operating systems come in a larger variety of con-
figurations than ever before: the same personal computer
OS is used in practice with main memories ranging from
32Mbytes to over 1Gbyte. It is a challenge for OS design-
ers to improve virtual memory policies to obtain good per-
formance, regardless of system configuration. For several
decades, LRU has been the dominant replacement policy,
either used or approximated in a variety of contexts. LRU
has been shown empirically to often be very good-typically
within a modest constant factor of optimal in misses for a
fixed memory size. Nevertheless, LRU exhibits a well known
failure mode, which often affects adversely its performance
for small memories. In particular, the performance of LRU
suffers for regular access patterns larger than the size of main
memory. Such patterns are quite common in programs. For
instance, consider any roughly cyclic (loop-like) pattern of
accesses over modestly more pages than will fit in memory.
Such cyclic patterns could be induced either by a loop in the
program execution or by a runtime system, like a garbage
collector that reuses memory. When pages are touched cycli-
cally, and do not all fit in main memory, LRU will always
evict the ones that have not been touched for the longest
time, which are exactly the ones that will be touched again
soonest.

One way to look at this phenomenon is that LRU keeps
each page in memory for a long time, but cannot keep all
of them for long enough. In contrast, an optimal algorithm
will evict some pages shortly after they are touched in a
given iteration of the loop. Evicting these pages early allows

other pages to remain in memory until they are looped-over
again. Thus, an optimal algorithm for large cyclic reference
patterns is “unfair’‘-there is nothing particularly notewor-
thy about the pages chosen for “early” eviction relative to
LRU. The pages are simply sacrificed because fairness is a
disaster in such a situation.

The above observations form the intuition behind Early
Eviction LRU (EELRU). EELRU performs LRU replace-
ment by default but diverges from LRU and evicts pages
early when it notices that too many pages are being touched
in a roughly cyclic pattern that is larger than main memory.
Such patterns can be reliably detected using recency infor-
mation (i.e., information indicating how many other pages
were touched since a page was last touched). This is the

122

same kind of information maintained by LRU, but EELRU
maintains it for resident and non-resident pages. In partic-
ular, EELRU detects that LRU underperforms when many
of the fetched pages are among those evicted lately.

This behavior of EELRU provides an interesting guar-
antee on its performance relative to LRU. The miss rate of
EELRU can never be more than a constant factor higher
than that of LRU (with the exact value depending on the
parameters picked for the algorithm). The reason for this
bound is that EELRU deviates from LRU only when the
latter incurs many faults and reverts back to LRU as soon
as EELRU starts incurring more faults-in other words, if
EELRU is performing poorly, it will quickly return to LRU-
like behavior. LRU, in contrast, can perform worse than
EELRU by a factor proportional to the number of memory
pages in the worst case. This factor is usually in the thou-
sands. This guaranteed property of EELRU is interesting
both because of the ubiquity of LRU (and its approxima-
tions, e.g., segmented FIFO [TuLe81, BaFe83]) and because
of the commonality of the LRU worst-case pattern (a simple,
large loop) in practice.

Additionally, EELRU is firmly baaed on a distinct prin-
ciple of program locality studies, that of timescale relativity
(see also [WKM94]). Program behavior can be studied at
many timescales (for instance, real-time, number of instruc-
tions executed, number of memory references performed,
etc.). Timescale relativity advocates that the timescale of a
study should express only events that matter for the studied
quantity. For instance, a typical hardware cache should ex-
amine different events than a virtual memory replacement
policy. A loop over 6OOKbytes of data is very important
for the former but may be completely ignored by the latter.
Timescale relativity comes into play because real programs
exhibit strong phase behavior. EELRU tries to adapt to
phase changes by assigning more weight to “recent” events.
The notion of “recent” and time, in general, is defined in
EELRU with respect to;he number of “relevant events” that
occur. Relevant events are only references to pages that are
not among the most recently touched. Intuitively, EELRU
ignores all high-frequency references as these do not affect
replacement decisions and may “dilute” time so much that
important regularities are impossible to distinguish.

Also according to timescale relativity, time in EELRU
advances at a rate inversely proportional to the memory size.
That is, for larger memories, a proportionally larger number
of relevant events have to occur for the algorithm to decide
to adapt its behavior. The reason behind this choice is that
the timescale most relevant to caching decisions is the one
at which eviction decisions turn out to be good or bad, i.e.,
roughly the time a page is likely to spend in memory, and
either be touched or not before being evicted. Time in this
sense depends on the rate at which a program touches a
number of distinct pages comparable to the memory size,
which may force evictions. If a program touches few pages
(relative to the memory size), little or no time passes. If
it touches many pages, time passes rapidly. At any given
eviction, the replacement policy should attempt to choose a
page which will not be touched for a long “time”, i.e., until
after “many” other pages are touched-more pages than will
fit in memory. This timescale is also crucial for adaptation
because an online adaptive replacement policy must detect
program behaviors that last long enough to matter to its
choice of caching strategies.

In this paper we argue that timescale relativity repre-
sents a sound principle upon which locality studies should
be based. This includes not only the analysis of replacement

algorithms but also the overall evaluation of program local-
ity. We examine some previous replacements algorithms in
this light (Section 2). Also, we propose that a special kind
of plot, termed a recency-reference graph, is appropriate for
studying program locality behavior (Section 4).

To validate EELRU experimentally, we applied it to four-
teen program traces and studied its performance. Most
of the traces (eight) are of memory-intensive applications
and come from the recent experiments of Glass and Cao
[GlCa97]. Glass and Cao used these traces to evaluate SEQ,
an adaptive replacement algorithm that attempts to detect
linear (not in recency but in address terms) faulting pat-
terns. This set of traces contains representatives from three
trace categories identified in [GlCa97]: traces with large
memory requirements but no clear memory access patterns,
with small access patterns, and with large access patterns.
An extra six traces were collected as representatives of appli-
cations that are not memory-intensive but may have small-
scale reference patterns.

The results of our evaluation are quite encouraging. EE-
LRU performed at least as well as LRU in almost all situa-
tions and significantly better in most. Results of more than
30% fewer faults compared to LRU were common for a wide
range of memory sizes and for applications with large-scale
reference patterns. A comparison with the SEQ algorithm
[GlCa97] was also instructive: SEQ is based on detecting
patterns in the address space, while EELRU detects pat-
terns in the recency distribution. Although our simulation
was quite conservative (see Section 4), EELRU managed to
obtain significant benefit even for traces for which SEQ did
not. On the other hand, SEQ is by nature an aggressive al-
gorithm and performed better for programs with very clear
linear access patterns in the address space. Even in these
cases, however, EELRU captured a large part of the avail-
able benefit.

Overall, EELRU is a simple, soundly motivated, effective
replacement algorithm. As a representative of an approach
to studying program behavior based on recency and time-
scale relativity, it proves quite promising for the future.

2 Motivation and Related Work

The main purpose of this section is to compare and con-
trast the approach taken by EELRU to other replacement
policies. This will help illustrate the rationale behind some
of the design choices in EELRU. Management of memory
hierarchies has been a topic of study for several decades.
Because of the volume of work on the subject, we will limit
our attention to some selected references.

EELRU uses recency information to distinguish between
pages. A recency-based standpoint (see also [Spi76, FeLW78,
WoFL83]) dictates that the only way to differentiate be-
tween pages is by examining their past history of references,
without regard to other information about the pages (e.g.,
proximity in the address space). This ensures that looping
patterns of several different kinds are treated the same. Note
that access patterns that cause LRU to page excessively do
not necessarily correspond to linear patterns in the mem-
ory address space. For instance, a loop may be accessing
records connected in a linked list or a binary tree. In this
case, accesses are regular and repeated, but the addresses
of pages touched may not follow a linear pattern. That is,
interesting regularities do not necessarily appear in memory
arrangements but in how recently pages were touched in the
past. The SEQ replacement algorithm [GlCa97] is one that
bases its decisions on address information (detecting sequen-

123

tial address reference patterns). Consequently, it is lacking
in generality (e.g., cannot detect loops over linked lists con-
necting interspersed pages). Section 4 compares EELRU
and SEQ extensively.

EELRU is based on the principle of timescale relativity,
which helps it detect and adapt to phase changes. The first
application of timescale relativity in EELRU is in determin-
ing that time advances at a slower rate for larger memo-
ries, or, equivalently, that the length of what constitutes a
“phase” in program behavior is proportional to the memory
size examined. This idea is by no means new. In fact, it is
commonplace in many pieces of theoretical work on paging
(e.g., [SlTa85, Tor98]), where an execution is decomposed
into phases with working sets of size equal to that of mem-
ory.

The second application of timescale relativity in EELRU
dictates that only events that matter for replacement de-
cisions should count to advance time. In the past, several
replacement algorithms based on good ideas have yielded
rather underwhelming results because they were affected
by events at the wrong timescale. For instance, EELRU
uses reference recency information to predict future refer-
ence patterns. This is similar to the approach taken by
Phalke [Pha95] with the inter-reference gap (IRG) model.
Phalke’s approach attempts to predict how soon pages will
be referenced in the future by looking at the time between
successive past references. A simpler version of the same
idea is the well-known Atlas loop detector [BFH68] that ex-
amines only the last successive references. The loop detec-
tor fails because time is measured as the number of memory
references performed. A timescale relative treatment would
(for instance) define time in terms of the number of pages
touched that have not been touched recently. Note the im-
portance of this difference: time-baaed approaches, like IRG
and the loop detector, do not filter out high-frequency in-
formation. If a loop repeats with significant variation per
iteration the time between successive references will vary a
lot. This is not unusual: loops may perform different num-
bers of operations per step during different iterations-as is,
for instance, the case with many nested loop patterns. The
Atlas loop detector would then fail to recognize the regular-
ity. More complex, higher order IRG models (such as those
studied by Phalke) can detect significantly more regulari-
ties in the presence of variation. This complexity, however,
makes them prohibitive for actual implementations. At the
same time, the reference pattern in timescale relative terms
may be extremely regular.

A view based on recency and timescale relativity can
be applied to other work in the literature. Most work on
replacement policies deals with specific formal models of
program behavior. Indeed EELRU itself is inspired by the
LRU stack model (LRUSM) [Spi76], as we will discuss in
Section 3.2. LRUSM is an independent events model, where
events are references to pages identified by their recency (i.e.,
the number of other pages touched after the last touch to
a page). An optimal replacement algorithm for LRUSM
is that of Wood, Fernandez, and Lang [WoFL83]. Unfor-
tunately, programs cannot be modeled accurately as inde-
pendent recency events. On the other hand, short program
phases can be modeled very closely using LRUSM. Hence,
a good on-line recency algorithm needs to be adaptive to
detect phase changes. Timescale relativity (as in EELRU)
is crucial for providing such adaptivity reliably.

Other well-known models are those in the class of Markov
models (e.g., [CoVa76, FrGu741). The straightforward case
of a 0-th order Markov model corresponds to the well known

independent reference model (IRM) [ADU71]. An optimal
replacement algorithm for Markov models can be found in
[KPR92]. We believe that replacement algorithms based on
Markov models fail in practice because they try to solve a far
harder problem than that at hand. A replacement algorithm
is a program using past data to answer a simple question:
“which memory page will be first referenced farthest into the
future?” Markov models express the probability of occur-
rence for specific sequences of references. Most of the pages
referenced by real programs, however, are re-referenced very
soon and often. The number and order of m-references is
not relevant for replacement decisions. In our view, Markov
models attempt to predict program behavior at the wrong,
much more detailed, timescale. This makes Markov model-
based replacement too brittle for actual use-realistic mod-
els cannot offer any accuracy at a large enough timescale
(such as that of memory replacement decisions).

Finally, EELRU can be viewed as a way to partially
negate an often-stated assertion about the limits of actual
eviction algorithms. Quoting from [Tor98]:

Stated another way, the guaranteed performance
of any deterministic on-line algorithm degrades
sharply as the intrinsic working set size of an
access sequence increases beyond [the memory
size] whereas the performance of the optimal off-
line algorithm degrades gracefully as the intrinsic
working set size of an access sequence increases
beyond [the memory size].

Even though this assertion holds under theoretical worst-
case analysis, in practice program reference sequences ex-
hibit enough regularity that an on-line algorithm can exploit
to imitate the behavior of the optimal off-line algorithm.
EELRU is an example of this approach and adds to LRU
the ability to gracefully degrade its performance for large
working sets when reference patterns are roughly cyclic.

3 The EELRU Algorithm

3.1 General Idea

The structure of the early-eviction LRU (EELRU) algorithm
is quite simple:

1. Perform LRU replacement unless many pages fetched
recently had just been evicted.

2. If many pages fetched recently had just been evicted,
apply a fallback algorithm: either evict the least re-
cently used page or evict the e-th most recently used
page, where e is a pm-determined recency position.

To turn this idea into a concrete algorithm, we need to define
the notions of “many”, “recently”, etc., (highlighted above),
as well as an exact fallback algorithm. By changing these
aspects we obtain a family of EELRU algorithms, each with
different characteristics. In this paper we will only discuss a
single fallback algorithm (one that is particularly simple and
has a sound theoretical motivation). The algorithm is de-
scribed in Section 3.2. In this section we describe the main
flavor of the EELRU approach, which remains the same re-
gardless of the actual fallback algorithm used.

Figure 1 presents the main elements of EELRU schemat-
ically, by showing the reference recency azis (also called the
LRU azis) and the potential eviction points. The reference
recency axis is a discrete axis where point i represents the
i-th most recently accessed page (written r(i)). As can be

124

- LRU memory +- early regton +- late region - - - -*
region (potential

I t eviction points)
I I

1 e M
(MRU page) (early eviction point) (main memory size)

Figure 1: General EELRU scheme: LRU axis and corre-
spondence to memory locations.

seen in Figure 1, EELRU distinguishes three regions on the
recency axis. The “LRU memory region” consists of the first
e blocks, which are always in main memory. (Note that the
name may be slightly misleading: the “LRU region” holds
the most recently used blocks. The name comes from the
fact that this part of the buffer is handled as a regular LRU
queue.) Position e on the LRU axis is called the early evic-
tion point. The region beginning after the early eviction
point and until the memory size, M, is called the “early
region”. The “late region” begins after point M and its ex-
tent is determined by the fallback algorithm used (e.g., see
Section 3.2).

Recall that, at page fault time, EELRU will either evict
the least recently used page or the page at point e on the
recency axis (i.e., the e-th most recently used page). The lat-
ter is called an early eviction and its purpose is to keep not-
recently-touched pages in memory for a little longer, with
the hope that they will soon be referenced again. The chal-
lenge is for EELRU to adapt to changes in program behavior
and decide reliably which of the two approaches is best in
every occasion.

EELRU maintains a queue of recently touched pages
ordered by recency, in much the same way as plain LRU.
The only difference is that the EELRU queue also contains
records for pages that are not in main memory but were re-
cently evicted. EELRU also keeps the total number of page
references per recency region (i.e., two counters). That is,
the algorithm counts the number of recent references in the
“early” and “late” regions (see Figure 2a). This informa-
tion enables a cost-benefit analysis, based on the expected
number of faults that a fallback algorithm would incur or
avoid. In essence, the algorithm makes the assumption that
the program recency behavior will remain the same for the
near future and compares the page faults that it would incur
if it performed LRU replacement with those that it would
incur if it evicted pages early.

Section 3.2 demonstrates in detail how this analysis is
performed, but we will sketch the general idea here by means
of an example. Consider Figure 2a: this shows the recency
distribution for a phase of program behavior. That is, it
shows for each position on the recency axis how many hits
to pages on the position have occurred lately. The distribu-
tion changes in time, but remains fairly constant during sep-
arate phases of program behavior. The EELRU adaptivity
mechanism is meant to detect exactly these phase changes.

If the distribution is monotonically decreasing, LRU is
the best choice for replacement. Nevertheless, large loops
could cause a distribution like that in Figure 2a, with many
more hits in the late region than in the early region. This
encourages EELRU to sacrifice some pages in order to allow
others to stay in memory longer. Thus, EELRU starts evict-
ing pages early so that eventually more hits in the late region
will be on pages that have stayed in memory (Figure 2b).

.
EELRU is not the first algorithm to attempt to exploit

such recency information fo; eviction decisions (e.g., see
[FeLW78]). Its key point, however, is that it does so adap-
tively and succeeds in detecting changes in program phase
behavior. In the description of the general idea behind
EELRU we used the word “recently”. The implication is
that the cost-benefit analysis performed by EELRU assigns
more weight to “recent” faulting information (the weight de-
creases gradually for older statistics). The crucial element
is the timescale of relevant memory references. The EELRU
notion of “recent” refers neither to real time nor to virtual
time (measured in memory references performed). Instead,
time in EELRU is defined as the number of relevant events
for the given memory size. The events considered relevant
can only be the ones affecting the page faulting behavior of
an application (i.e., around size M). These events are the
page references (both hits and misses) in either the early
or the late region. High-frequency events (i.e., hits to the
e most recently referenced pages) are totally ignored in the
EELRU analysis. The reason is that allowing high-frequency
references to affect our notion of time dilutes our informa-
tion to the extent that no reliable analysis can be performed.
The same number of memory references may contain very
different numbers of relevant events during different phases
of program execution.

The basic EELRU idea can be straightforwardly gener-
alized by allowing more than one instance of the scheme
of Figure 1 in the same replacement policy. This can be
viewed as having several EELRU eviction policies on-line
and choosing the best for each phase of program behavior.
For instance, multiple early eviction points may exist and
only the events relevant to a point would affect its cost-
benefit analysis. The point that yields the highest expected
benefit will determine the page to be replaced. Section 3.2
discusses this in more detail.

Finally, we should point out that the simplicity of the
general EELRU scheme allows for quite efficient implemen-
tations. Even though we have not provided an in-kernel
version of EELRU, we speculate that it is quite feasible. In
particular, EELRU can be approximated using techniques
identical to standard in-kernel LRU approximations (e.g.,
segmented FIFO [TuLe81, BaFe83]). References to the most
recently used pages do not matter for EELRU statistics and
incur no overhead. Compared to LRU, the only extra re-
quirement of EELRU is maintaining recency information
even for pages that have been evicted. Since this informa-
tion only changes at page fault time, the cost of updating it
is negligible.

3.2 A Concrete Algorithm

The first step in producing a concrete instance of EELRU is
choosing a reasonable fallback algorithm. This will in turn
guide our cost-benefit analysis, as well as the exact distribu-
tion information that needs to be maintained. An obvious
candidate algorithm would be one that always evicts the e-
th most recently used page. This is equivalent to applying
Most Recently Used (MRU) replacement to the early re-
gion and clearly captures the intention of maintaining less
recent pages in memory. Nevertheless real programs exhibit
strong phase behavior (e.g., see the findings of [DenSO])
which causes MRU to become unstable (pages which may
never be touched again will be kept indefinitely).

The algorithm of Wood, Fernandez, and Lang [FeLW78,
WoFL83] (henceforth called WFL *) is a simple modifica-

‘The WFL algorithm is called GLRU (for “generalized LRU”) in

125

(b)

(evictions from e)

I1111 I I ;I I I I IllIll I 1 II I I I I
I r;mmrmm;mmm”Om10

pages in memory pages in memory

Figure 2: Example recency distribution of page touches: with LRU (left-hand side) many references are to pages not in
memory. After evicting early (right-hand side) some less recent pages stay in memory. Since references to less recent pages
are common (in this example distribution), evicting early yields benefits.

LRU memory
(potential eviction point) (potential eviction point)

region
I I I

1 (MRU page) e M 1 (late eviction point)
(early eviction point) (main memory size)

Figure 3: EELRU with WFL fallback: LRU axis and corre-
spondence to memory locations.

tion of MRU that eliminates this problem. The WFL re-
placement algorithm specifies two parameters representing
an early and a late eviction point on the LRU axis. Evic-
tions are performed from the early point, unless doing so
means that a page beyond the late eviction point will be in
memory. Thus the algorithm can be written simply as:

if r(1) is in memory
and the fault is on a less recently accessed page

then evict page r(l)
else evict page r(e)

(where e is the early and 1 the late eviction point). Figure 3
shows some elements of the WFL algorithm schematically.

It has been shown (see [WoFL83]) that there exist val-
ues for e and 1 such that the WFL algorithm is optimal
for the LRU stack model of program behavior [Spi76] (that
is, an independent-events model where the events are ref-
erences to positions on the LRU axis). Again, however,
program phase behavior (even for well-defined, long last-
ing phases) can cause the algorithm to underperform. This
is not surprising: WFL is not an adaptive algorithm. In-
stead it presumes that the optimal early and late points are
chosen based on a known-in-advance recency distribution.
Thus, the adaptivity provided by EELRU is crucial: it is
a way to turn WFL into a good on-line replacement algo-
rithm. This is particularly true when multiple pairs of early
and late eviction points exist and EELRU chooses the one
yielding the most benefit (see subsequent discussion).

Even though entire programs cannot be modeled accu-
rately using the LRU stack model, shorter phases of pro-
gram behavior can be very closely approximated. Under
the assumptions of the model, the WFL algorithm has the
additional advantage of simplifying the cost-benefit analysis
significantly. One of the properties of WFL is that when the
algorithm reaches a steady state, the probability P(n) that

[FeLW78]. To avoid confusion, we will not use this acronym, since it
has been subsequently overloaded (e.g., to mean “global” LRU).

P(n)

1

0
1 e e+l M I
(MRU page) (early eviction (main memory size) (late eviction

point) point)

Figure 4: Probability of being in memory for a page with a
given recency.

the n-th most recently accessed page (i.e., page r(n)) is in
memory is:

i

1 ifn<e
P(n) = (it4 - e)/(l- e) if e < n <= 1

0 otherwise

The probability distribution is shown in Figure 4. Now
the cost-benefit analysis for EELRU with WFL fallback is
greatly simplified: we can estimate the number of faults that
WFL would incur (at steady state) and compare that num-
ber to LRU. We will call total the number of recent hits on
pages between e and 1 (in reference recency order). Simi-
larly, we will call early the number of recent hits on pages
between e and M. The eviction algorithm then becomes:

if total *(IL4 - e)/(l - e) 5 early
or (r(l) is in memory

and the fault is on a less recently accessed page)
then evict the least recently accessed page
else evict page r(e)
We can now consider the obvious generalization of the

algorithm where several instances of WFL, each with dif-
ferent values of e and 1, are active in parallel. By e;, l;,
totali, and earlyi we will denote the e, 1, total and early
values for the i-th instance of the algorithm. Then, the in-
stance of WFL that will actually decide what page is to be
evicted is the one that maximizes the expected benefit value
totak . (A4 - e)/(l - e)- early;. If all such values are nega-
tive, plain LRU eviction is performed. Note that in the case
of multiple early and late eviction points, EELRU adaptiv-
ity performs a dual role. On one hand, it produces on-line
estimates of the values of e and 1 for which the algorithm per-

126

forms optimally (also, plain LRU is no more than another
case for these values). On the other hand, the adaptivity
allows detecting phase transitions and changing the values
accordingly.

In the case of multiple early and late eviction points, one
more modification to the basic WFL algorithm makes sense.
Since not all late eviction points are equal, it is possible that
when the i-th instance of WFL is called to evict a page,
there is a page r(n) in memory, with n > li. In that case,
the algorithm should first evict all such pages (to guarantee
that, in its steady state, all pages less recently referenced
than li will not be in memory). Note that this modification
of the basic WFL algorithm does not affect its steady state
behavior (and, consequently, its proof of optimality for the
LRU stack model, as presented in [WoFL83]). Taking the
change into account, our final eviction algorithm becomes:

let benefit be the maximum of the values
tOtOli . (M - t!i)/(li - ei) - earlyi

and j be the index for which this value occurs

if benefit 5 0
or a page r-(n), n > lj is in memory
or (T(lj) is in memory

and the fault is on a less recently accessed page)
then evict the least recently accessed page
else evict page r(ej)

This form of EELRU is the one used in all experiments de-
scribed in this paper.

3.3 EELRU vs. LRU

An interesting property of EELRU is that it is robust with
respect to LRU under worst-case analysis. In particular, EE-
LRU will never perform more than a constant factor worse
than LRU, while LRU can perform worse than EELRU by a
factor proportional to the number of memory pages. The ex-
act values of these factors depend on the parameters picked
for the EELRU algorithm-e.g., the number and positions of
early and late eviction points, and the speed of adaptation.

Although we will not offer a rigorous proof of this claim,
the argument is straightforward. EELRU diverges from
LRU only when the latter has incurred many faults lately
and reverts back to LRU when it detects that LRU would
have performed better. Thus, the only cases when LRU is
better than EELRU are such that LRU incurs many faults
(enough to tempt EELRU to diverge). In such cases the
ratio of miss rates of the two algorithms is never worse than
a constant. Conversely, a steady loop slightly larger than
memory but within one of the late regions of EELRU will
cause LRU to suffer misses for every page, while EELRU
will suffer a constant number of misses per iteration.

For an illustrative example of this worst-case analysis,
consider the extreme case where EELRU has a single early
eviction point at position 1 of the recency axis (i.e., it may
evict early the most recently used page) and a corresponding
late eviction point at position M + 1 (with M being the
memory size). In this case, a steady loop over M + 1 pages
will cause LRU to suffer M + 1 faults, while EELRU will
only suffer a single fault per iteration. At the same time,
EELRU will never underperform LRU by a factor of more
than 2 under any reference pattern. If it decides to diverge
from LRU, it may incur at most 2 faults for each LRU fault
that causes the divergence.

4 f Experimental Assessment

4.1 Settings and Methodology

To assess the performance of EELRU, we used fourteen pro-
gram traces, covering a wide range of memory access char-
acteristics. Eight of the traces are of memory-intensive ap-
plications and were used in the recent experiments by Glass
and Cao [GlCa97]. Another six traces were collected indi-
vidually from programs that do not exhibit large memory
reference patterns.

The eight traces from [GlCa97] are only half of the traces
used in that study. The rest of the experiments could not be
reproduced because the reduced trace format used by Glass
and Cao sometimes omitted information that was necessary
for accurate EELRU simulation. To see why this happens,
consider the behavior of EELRU: at any given point, early
evictions can be performed, making the algorithm replace
the page at point e on the LRU axis. Thus, the trace should
have enough information to determine the e-th most recently
accessed page. This is equivalent to saying that the trace
should be sufficiently accurate for an LRU simulation with
a memory of size e. The reduced traces of Glass and Cao
have limitations on the memory sizes for which LRU sim-
ulation can be performed. Thus, the minimum simulatable
memory size for EELRU (which is larger than the minimum
simulatable size for LRU) may be too large for meaning-
ful experiments. For instance, consider an EELRU simu-
lation for which the “earliest” early eviction point is such
that the early region is 60% of the memory (that is, 40% of
the memory is managed using strict LRU). Then the min-
imum memory for which EELRU can be simulated will be
2.5 times the size of the minimum simulatable LRU mem-
ory. For some traces, this difference makes the minimum
simulatable memory size for EELRU fall outside the mem-
ory ranges tested in [GlCa97]. For example, the “gee” trace
was in a form that allowed accurate LRU simulations only
for memories larger than 475 pages (see [GlCa97]). Using
the above early eviction assumptions, the minimum EELRU
simulatable memory size would be 1188 pages, well outside
the memory range for this experiment (the trace causes no
faults for memories above 900 pages).

To reproduce as many experiments as possible, we picked
early eviction points such that at least 40% of the memory
was managed using strict LRU. This makes our simulations
quite conservative: it means that EELRU cannot perform
very early non-LRU evictions. As mentioned earlier, simula-
tions for eight of the traces are meaningful for this choice of
points 2 (i.e., the simulated memory ranges overlap signifi-
cantly with those of the experiments of Glass and Cao). The
table of Figure 5 contains information on these traces. It is
worth noting that the above set of traces contains represen-
tatives from all three program categories identified by Glass
and Cao. These are pmgmms vith no clear patterns (mur-
phi, m88ksim), programs with smolf-scole patterns (perl),
and pmgmms with large-scale reference patterns (the rest of
them). An extra six traces were used to supply more data
points. These axe traces of executions that do not consume
much memory. Hence, all their memory patterns are, at
best, small-scale. The applications traced are espresso (a cir-
cuit simulator), gee (a C compiler), ghostscript (a PostScript
engine), grobner (a formula-rewrite program), lindsay (a
communications simulator for a hypercube computer), and
p2c (a Pascal to C translator).

‘TWO more traces from [GlCa97), “es” and “fgm”, satisfy the re-
strictions outlined above but were not made available to us.

127

Program Description Min. simulatable
LRU memory

I (4KB pages))
applu]Solve 5 coupled 608 1

gnuplot Postscript graph generation
~~

cycle-level simulator
murnhi 1 Protocol verifier I 533
peri Interpreted scripting language 2409
trygtsl Tridiagonal matrix calculation 611
wave5 Plasma simulation 913

Figure 5: Information on traces used in [GlCa97]

All of the simulations were performed using twelve com-
binations (pairs) of early and late eviction points. Three
early points were used, at 40%, 60%, and 80% of the memory
size (that is, at least 40% of the memory was handled by pure
LRU). The late points were chosen so that the probability
P(n) for e < n <= 1 took the values 213, l/2, l/3, and l/4.
One more parameter affects simulation results significantly.
Recall that replacement decisions should be guided by re-
cent program reference behavior. To achieve this, distribu-
tion values need to be “decayed”. The decay is performed in
a memory-scale relative way: the values for all our statistics
are multiplied by a weight factor progressively so that the
M-th most recent reference (M being the memory size) has
0.3 times the weight of the most recent one. The algorithm
is not very sensitive with respect to this value. Values be-
tween 0.1 and 0.5 yield almost identical results. Essentially,
we just need to ensure that old behavior matters exponen-
tially less, and decays on a timescale comparable to the rate
of replacement.

4.2 Locality Analysis

To show the memory reference characteristics of our traces,
we plotted recency-reference graphs. Such graphs are scat-
ter plots that map each page reference to the page position
on the recency axis. High-frequency references (i.e., refer-
ences to pages recently touched) are ignored, thus resulting
in graphs that maintain the right amount of information at
the most relevant timescale for a clear picture of program lo-
cality. For instance, consider the recency-reference graph for
the wave5 trace, plotted in Figure 6. The graph is produced
by ignoring references to the 1000 most recently accessed
pages. If such references were taken into account, the pat-
terns shown in the graph could have been “squeezed” to
just a small part of the resulting plot: interesting program
behavior in terms of locality is usually very unevenly dis-
tributed in time.

Based on this graph, we can make several observations.
First, wave5 exhibits strong, large-scale looping behavior.
There seem to be loops accessing over 6000 pages. The hor-
izontal lines represent regular loops (i.e., pages are accessed
in the same order as their last access after touching the same
number of other pages). Note also the steep “upwards” di-
agonals which commonly represent pages being re-accessed
in the opposite order from their last access.

Patterns in recency-reference graphs convey a lot of in-

mo,

Figure 6: Recency-reference graph for wave5.

formation of this kind and offer several advantages over
the usual space-time graphs (e.g., see the plots in [Pha95,
GlCa97]) for program locality analysis. To name a few:

l The information is more relevant. Instead of depict-
ing which page gets accessed, recency-reference graphs
show how recently a page was accessed before being
touched again.

l High frequency information (e.g., hits to the few most
recently accessed pages) dilutes time in space-time graphs.
It is common that all interesting behavior (with re-
spect to faulting) occurs only in a small region of a
space-time graph. Such information does not affect
recency-reference graphs.

l First-time reference information may dominate a space-
time graph (e.g., allocations of large structures). Such
information is irrelevant for paging analysis and does
not appear in a recency-reference graph.

Figure 7 presents recency-reference graphs for represen-
tative traces. There are several observations we can make:

l All programs exhibit strong phase behavior in recency
terms. That is, their access patterns exhibits some
clearly identified features that commonly persist. Com-
paring the values of the horizontal and vertical axes
gives a good estimate of how long features persist. For
all plots, features most commonly last for at least as
many references as their “size” in pages.

l The gnuplot graph exhibits strong and large loops re-
stricted to a very narrow recency region. All refer-
ences in the gnuplot trace were either to the 200 most
recently accessed pages (these are filtered out in the
plot) or to pages above the 15000 mark on the recency
axis!

l The m88ksim graph initially displays a large loop (note
the short horizontal line), followed by a “puff-of-smoke”
feature, and an area without distinctive patterns. The
initial loop is a simple linear loop over a little more
than 4500 pages. Note that it lasts for approximately
the same number of references, indicating that it is
just a loop with two iterations. The “puff-of-smoke”

128

Figure 7: Recency-reference graphs for representative traces.

pattern is characteristic of sets of pages that are ac-
cessed all together but in “mndom” (uniform) order.
When some pages in the set get touched, pages before
them on the recency axis become less-recently-touched
(i.e., move “upward”). Gradually, all accesses concen-
trate to higher and higher points on the recency axis
(with the size of the set being the limit). The feature-
less part of the m88ksim graph represents “random”
accesses to a large structure. Given the nature of the
application we speculate that this could be a heavily
used hash-table.

l The per1 graph also exhibits “puff-of-smoke” features,
together with steep diagonals (recall that these repre-
sent pages being re-accessed in the opposite order).

Other recency-reference graphs are similar to the ones
shown. All six “small-scale” traces (espresso, gee, grobner,
ghostscript, lindsay, and p2c) behave like gee, having no dis-
tinctive patterns. Murphi displays random references, much
like m88ksim. The rest of the traces have regular patterns.
In the case of trygtsl, these are very clear, linear patterns
(like gnuplot). In the cases of ijpeg and applu, the patterns
look more like those of per1 and wave5.

Based on the recency-reference graphs we can identify
areas for which EELRU should exhibit a clear benefit. Thus,
if a graph displays high-intensity (dark) areas right above
low-intensity (light) areas, EELRU should be able to evict

some pages early and keep in memory those that will be
needed soon. Comparing these graphs with the results of
our simulations (in the following sections) shows that this
is indeed the case: the memory sizes for which EELRU is
particularly successful are near such intensity boundaries.

4.3 First Experiment:
Memory-intensive Applications

The first eight plots of Figure 8 show the page faults incurred
by EELRU, LRU, OPT (the optimal, off-line replacement
algorithm), and SEQ for each of the eight memory-intensive
traces. (SEQ is the algorithm of Glass and Cao [GlCa97],
with which these traces were originally tested.) A detailed
analysis of the behavior of LRU relative to OPT on these
traces can be found in [GlCa97]. Here we will restrict our
attention to EELRU.

As can be seen, EELRU consistently performs better
than LRU for seven out of eight traces (for murphi, EE-
LRU essentially performs LRU replacement). A large part
of the available benefit (as shown by the OPT curve) is cap-
tured for all applications that exhibit clear reference pat-
terns. A comparison with the SEQ algorithm is also quite
instructive.3

3The results for SEQ were obtained by running the simulator of
Glass and Cao on the traces. Testing SEQ on other traces would
require significant re-engineering of the simulator, as its replacement
logic is tied to the trace reduction format used in [GlCa97].

129

Memory size (4 KB Pages)

m88ksim

Memory size (4 KB Pages)

x?am , , , , . , ,
hl% - _

EELR”
SE0 .._...-

lccow 4
\

\
*...

mm 8500 7ow ,500 8coo 8500 woo 96M 1
Memory size (4 KB pages)

Figure 8: Fault plots for memory-intensive applications. For gnuplot, the SEQ curve almost overlaps the OPT curve. For
murphi, the EELRU curve almost overlaps the LRU curve. The last plot (bottom right) is that of gnuplot with an extra, very
early eviction point.

130

The idea behind SEQ is to detect access patterns by ob-
serving linear faulting sequences (the linearity refers to the
address space). Thus, SEQ is based on detecting address-
space patterns, while EELRU is based on detecting (coarse-
grained) recency-space patterns. Each approach seems to
offer distinct benefits. EELRU is capable of detecting regu-
larities that SEQ cannot capture. For instance, a linked list
traversal may not necessarily access pages in address order,
even though it could clearly exhibit strong looping behav-
ior. Such traversals are straightforwardly captured in the
recency information maintained by EELRU. On the other
hand, SEQ can detect linear patterns more quickly than EE-
LRU, and thus get more of the possible benefit in such cases.
The reason is that recency information does not become
available until a page is re-accessed (i.e., during the second
iteration of the loop), while address information is available
right away. The latter observation has consequences on the
robustness of the two algorithms: EELRU is fairly conser-
vative and only diverges from LRU in the case of persistent
reference patterns. SEQ, on the other hand, is more risky
and guesses about traversals which it has not encountered
before (e.g., presumes that all sequential scans of more than
20 pages will be larger than main memory). Therefore, we
expect that EELRU is much less likely to cause harm for
randomly selected programs with no large-scale looping pat-
terns.

The results of our experiments agree with the above anal-
ysis. EELRU outperformed SEQ for three of the traces (ap-
plu, ijpeg, perl), SEQ was better for another three (gnuplot,
trygtsl, and wave5), while for m88ksim and murphi the dif-
ference was small (EELRU was slightly better in one case
and slightly worse in the other). Note that SEQ performed
better for programs with very clear linear access patterns.
This is a result of the early loop detection performed by
SEQ. Even in these cases, however, EELRU captured most
of the available benefit. For all traces with recency pat-
terns that could be exploited, EELRU consistently yielded
improvements to LRU, even when the SEQ results seemed
to indicate that few opportunities exist (e.g., ijpeg, perl).

Note also that, as mentioned in Section 4.1, the simu-
lation of EELRU on these traces was conservative-40% of
the memory buffer had to be handled using plain LRU. This
accounts for some loss of effectiveness, especially for traces
with clear access patterns. We can confirm this for gnu-
plot: the trace has enough information (see earlier table)
to enable meaningful simulations for early eviction points
corresponding to 10% of the memory size (i.e., only 10% of
the buffer is strictly LRU). We added such an extra early
eviction point and the result is shown in the last (bottom
right) plot of Figure 8. As can be seen, the performance
of EELRU in this case is much better, approaching that of
SEQ and OPT. This is hardly unexpected. The gnuplot
trace exhibits very regular behavior (in fact, it is dominated
by a big loop). Hence, for memory sizes smaller than the
size of the loop, allowing EELRU to evict many pages early,
so that more other pages can remain longer in memory, is
beneficial.

Overall, we believe that the recency-based approach of
EELRU is simpler, intuitively more appealing, and of more
general applicability than address-based approaches like SEQ.
The generality conjecture cannot, of course, be proven with-
out extensive experiments and widely accepted “representa-
tive workloads” but the preliminary results of our experi-
ments seem to confirm it.

Finally, as can be seen in the plots, EELRU exhibits
what is known as “Belady’s anomaly”: increasing the size

of physical memory may increase the number of page faults.
This is a result of the adaptive behavior of EELRU, which
is intrinsic to the algorithm. EELRU takes risks and tries
to predict future program behavior based on past patterns.
As an example, the decision of diverging from LRU depends
on the memory size. For a larger memory size, EELRU may
decide that it is worth evicting some pages early in order to
capture a loop which is significantly larger than the memory
size. If the loop does not persist for long enough, EELRU
will incur more faults for this larger size than it would for a
smaller memory size, for which the algorithm would perform
simple LRU replacement. As another example of the risks
taken by EELRU, recency patterns are often not steady (re-
call the diagonal lines in the plots of Section 4.2). Thus,
the right early eviction point may not be immediately evi-
dent when EELRU starts diverging from LRU. This error in
the EELRU estimate will have diierent results for different
memory sizes, depending on the positions of late eviction
points relative to the shape of recency patterns.

4.4 Second Experiment: Small-scale Patterns

Our second experiment applied EELRU to traces without
extensive memory requirements. Even though these traces
are not interesting per se for a paging study, they help
demonstrate that our approach is stable and handles a wide
range of available memories. Additionally, these traces con-
firm that the patterns that EELRU recognizes are not unique
to programs written with paging in mind. Also, being able
to adapt both to large-scale and to small-scale patterns is
useful for any algorithm to be employed as a replacement
algorithm in a multi-process environment. A short discus-
sion on the potential of EELRU as a replacement algorithm
in time-sharing systems can be found in Section 6.

Because these traces are small and have no distinctive
patterns (e.g., see the gee recency-reference plot in Figure 7),
we would expect EELRU to behave similarly to LRU. This
confirms the robustness of the algorithm-EELRU is un-
likely to perform worse than LRU if no regular patterns
exist. As can be seen in the fault plots of Figure 9, this is
indeed the case. Note, however, that even for some of these
traces EELRU manages to get a small benefit compared to
LRU (around 10% less faulting on average). In particu-
lar, EELRU seems to be capable of detecting and exploiting
even very small-scale patterns. An examination of the gee
recency-reference plot (Figure 7) is quite interesting. We
see that there are two small regions where high-intensity
(dark) areas are directly above low-intensity (light) areas.
EELRU is exploiting exactly these small-scale patterns, and
exhibits most of its benefit for a memory size around 150-
the boundary of the dark and light areas in the plot.

5 Thoughts on Program Behavior and
Replacement Algorithms

LRU serves as a good reference point for understanding the
performance of other replacement algorithms. We have a
rough taxonomy of program behavior into four classes: (1)
LRU-friendly: In very good cases for LRU, any excellent
replacement policy must resemble LRU, by and large pre-
ferring to keep recently-touched pages in memory. Programs
that seldom touch more pages than will fit in memory, over
fairly long periods, are LRU-friendly. If this regularity is suf-
ficiently strong, LRU is nearly optimal, and many replace-
ment policies (e.g., Random or FIFO) will also do well. This
common case exhibits LRU’s greatest strength. (2) LRU-

131

lindsay

Figure 9: Fault plots for small-scale applications. For ghostscript (gs3.33), lindsay, and p2c the EELRU line overlaps the
LRU line. -

unfn’endly: In very bad cases for LRU, where LRU chroni-
cally evicts pages shortly before they are touched again, any
excellent replacement policy must evict some pages early to
keep others in late, rather like MRU. If this regularity is
sufficiently strong, MRU-like behavior will be nearly opti-
mal. This relatively common case exhibits LRU’s greatest
weakness; addressing it properly is the main contribution of
this paper, and we demonstrate that this is sufficient to sub-
stantially improve on LRU. (3) unfiendly: Programs which
touch many pages that have not been touched for a very long
time-i.e., pages that would have been evicted long ago by
LRU-are unfriendly to any replacement policy, even an op-
timal one. LRU does “well” for them by default, because it
is comparable to optimal in this case; our algorithm does the
same. (4) mized: This catch-all category covers programs
that often touch pages that would soon be evicted by LRU
and pages that LRU would have recently evicted. That is,
the aggregate recency distribution is not a particularly good
indicator, by itself, of what a replacement policy should do.
This is an area for future work.

Notice that, in this last case, a nearly optimal replace-
ment policy must evict some pages in preference to others,
without simply being fair like LRU, or simply being unfair
like MRU. It must make finer distinctions, recognizing more
subtle aspects of program behavior than we deal with in this
paper. Conversely, notice that in the other three cases, such
fine distinctions are unnecessary for good performance, and
may even be harmful if not made very well-if any of the
three regularities is strong enough, there is little benefit to
be gained by attempting to make fine distinctions, because
the crucial information is primarily in the aggregate behav-
ior of large numbers of pages, not in the details of particular
pages’ reference histories.

6 Conclusions and Future Work

Replacement algorithms are valuable components of oper-
ating system design and can affect system performance sig-
nificantly. In this paper we presented EELRU: an adaptive

132

variant of LRU that uses recency information for pages not
in memory to make replacement decisions. We believe that
EELRU is a valuable replacement algorithm. It is simple,
soundly motivated, intuitively appealing, and general. EE-
LRU addresses the most common LRU failure modes for
small memories, while remaining robust: its performance
can never be worse than that of LRU by more than a con-
stant factor. Simulation results seem to confirm our belief
in the value of the algorithm. The main axes of our future
experimentation will examine EELRU as a replacement al-
gorithm for time-sharing systems and the cost and perfor-
mance of an in-kernel approximation of EELRU.

Interestingly enough, there are several possibilities for a
recency-based approach to a replacement algorithm in multi-
processing systems. For one thing, EELRU itself could be
useful as a “global” algorithm (i.e., managing all pages the
same regardless of the process they belong to). For another,
recency information of the kind maintained by EELRU could
also help memory partitioning. That is, if a process in-
curs a lot of faults for recently evicted pages, a replacement
algorithm could allocate more memory to that process, at
the expense of a process for which a smaller memory space
would not cause many faults. These ideas open up possibil-
ities for quite sophisticated recency-based replacement al-
gorithms. EELRU has already served to demonstrate some
sound principles, like timescale-relative adaptivity, on which
these algorithms should be based.

Acknowledgments

We would like to thank the anonymous referees for their
detailed comments and advice on improving the paper.

References

[ADU71]

[BaFe83]

[BFH68]

[CoVa76]

[De&O]

[FeLW78]

[FrGu74]

[GlCa97]

A.V. Aho, P.J. Denning, and J.D. Ullman,
“Principles of Optimal Page Replacement”, in
JACM 18 pp.80-93 (1971).

0. Babaoglu and D. Ferrari, “Two-Level Re-
placement Decisions in Paging Stores”, IEEE
Transactions on Computers, 32(12) (1983).

M.H.J. Baylis, D.G. Fletcher, and D.J.
Howarth, “Paging Studies Made on the I.C.T.
ATLAS Computer”, Information Processing
1968, ZFZP Congress Booklet D (1968).

P.J. Courtois and H. Vantilborgh, “A Decom-
posable Model of Program Paging Behavior”,
Acto Znformotico, 6 pp.251-275 (1976)

P.J. Denning, “Working Sets Past and Present”,
IEEE Transactions on Software Engineering,
%-6(l) pp.64-84 (1980).

E.B. Fernandez, T. Lang, and C. Wood, “Effect
of Replacement Algorithms on a Paged Buffer
Database System”, IBM Journal of Research
and Development, 22(2) pp.185-196 (1978).

M.A. Franklin and R.K. Gupta, “Computation
of pf Probabilities from Program Transition Di-
agrams”, CACM 17 pp.186-191 (1974).

G. Glass and P. Cao, “Adaptive Page Replace-
ment Based on Memory Reference Behavior”,
Proc. SZGMETRZCS ‘97.

[KPR92]

[Pha95]

[SlTa85]

[Spi76]

[Tor98]

[TuLeBl]

[WKM94]

[WoFL83]

A.R. Karlin, S.J. Phillips, and P. Raghavan,
“Markov Paging”, in Proc. IEEE Symposium on
the Foundations of Computer Science (FOCS)
pp.208-217 (1992).

V. Phalke, Modeling and Managing Program
References in o Memory Hierarchy, Ph.D. Dis-
sertation, Rutgers University (1995).

D.D. Sleator and R.E. Tarjan, “Amortized Ef-
ficiency of List Update and Paging Rules”,
Communications of the ACM 28(2), pp.202-208
(1985).

J.R. Spirn, “Distance String Models for Pro-
gram Behavior”, Computer, 9 pp.1420 (1976).

E. Torng, “A Unified Analysis of Paging and
Caching”, Algorithmica 20, pp.175-200 (1998).

R. Turner and H. Levy, “Segmented FIFO Page
Replacement”, In Proc. SZGMETRZCS (1981).

P.R. Wilson, S. Kakkad, and S.S. Mukherjee,
“Anomalies and Adaptation in the Analysis and
Development of Prefetching Policies”, Journal
of Systems and Software 27(2):147-153, Novem-
ber 1994. Technical communication.

C. Wood, E.B. Fernandez, and T. Lang, “Mini-
mization of Demand Paging for the LRU Stack
Model of Program Behavior”, Information Pro-
cessing Letters, 16 pp.99-104 (1983).

133

