
Fall 2005 – CS 11 – Final exam Answers

1. Question: (5 points) In the following snippet of code, identify all places where type casting
would occur automatically or would need to occur through a forced cast. For each cast,
indicate whether it is automatic or forced, and indicate the types involved. Most of all, be
sure to indicate exactly which variable or expression is being cast.

int x = 5;
char y = x;
char z = y + 13;
double d = x;
double e = x * 5.0;
int q = y + z;

Answer: Line by line, with forced casts inserted as needed. . .

• int x = 5; No cast.

• char y = (char)x; Forced cast, int → char.

• char z = (char)(y + 13); Automatic cast of y, char → int, followed by a forced cast
on the result of the addition operation, int → char.

• double d = x; Automatic cast, int → double.

• double e = x * 5.0; Automatic cast of x, int → double.

• int q = y + z; Automatic cast of the result of the addition operation, char → int.

Commentary: Many people missed some of the automatic casts. Commonly, answers were
not specific about either which part of the expression was cast or what types were involved in
the cast.

1

2. Question: (5 points) What is the output of the program below when invoked with the
command line:

java Foo 4 newyear

class Foo {

public static void main (String[] args) {

double[] d = new double[Integer.parseInt[args[0]];
for (int i = 0; i < d.length; i++) {

d[i] = -i;
}

String s = new String("newyear");
if (s == (args[1])) {

baz(d, 1);
} else {

baz(d, -1);
}

System.out.println("Length: " + d.length);
for (int i = 0; i < d.length; i++) {

System.out.println("d[" + i + "] = " + d[i]);
}

} // main

public static void baz (double[] d, int x) {

if (x == 1) {
d = new double[d.length / 2];

}

for (int i = 0; i < d.length; i++) {
d[i] = i * 2;

}

} // baz

} // class Foo

Answer:

Length: 4
d[0] = 0.0
d[1] = 2.0
d[2] = 4.0
d[3] = 6.0

Commentary: The first common error concerns the line, in main(), that compares s to
args[1]. Specifically, s points to a String object that is, on the previous line, explicitly
created anew. It cannot be the case that args[1] points to that same object. The comparison
is one that compares pointer values, and since the two pointers cannot point to the same object,
the two pointers cannot be equal.
The second error concerns the line, in baz(), in which d is assigned to point to a new array of
half its original length. Neither the creation of this new array nor any subsequent changes to

2

the new array will be visible to main(), and thus will not be printed as part of the output of
the program. That’s because d, which is the only pointer to that new array, is a local variable
that disappears when baz() ends. Note that this problem arises only for those who believed
that x should be 1.
The final source of error addresses those who (correctly) believe that x, within the call to
baz(), should be -1. Specifically, in that case, d points to the original array that was created
within and passed from main(). Thus, changes to the array—specifically, the loop within
baz() that reassigned the value of each element of the array—are visible to main() and are
printed as part of the program’s output.

3

3. Questions: (10 points) Consider the problem of verifying that a given n-element array con-
tains one of every value from 1 through n. Now consider the following two method that
implement different algorithms for performing this verification:

public static boolean isValidVersionA (int[] x) {

boolean[] observed = new boolean[x.length];

for (int i = 0; i < x.length; i++) {

if ((x[i] < 1) || (x[i] > x.length) || (observed[x[i] - 1])) {
return false;

}

observed[x[i] - 1] = true;

}

return true;

}

public static boolean isValidVersionB (int[] x) {

for (int i = 0; i < x.length; i++) {
for (int j = i + 1; j < x.length; j++) {

if ((x[i] < 1) || (x[i] > x.length) || (x[i] == x[j])) {
return false;

}
}

}

return true;

}

As n becomes arbitrarily large, which verifier is going to run faster (e.g. perform fewer oper-
ations)? Can you state a rough formula (e.g. a Big-O expression) for the time each verifier
would take as a function of n?

Answer: Version A performs fewer operations. Specifically, version A is O(n), while version
B is O(n2).

Commentary: Nearly everyone got this question, and few people lost points on it. Nice
work! The key observation is that version A makes a single pass over the n-element input
array, recording in a second array the occurrence of each value. Version B, however, while
visiting each element in the array, visits every other element in the array as well. This, for
each of the n elements, it visits all other n− 1 elements, yielding an O(n2) running time.

4

4. Question: (10 points) Write a non-recursive method that computes the nth Fibonacci
number. Recall that the Fibonacci sequence is defined as:

F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2)

Answer: The following iterative method calculates the nth Fibonacci number:

public static int fib (int n) {

if (n < 0) {
System.out.println("ERROR: Invalid request for fib(" + n + ")");
System.exit(1);

}

if (n <= 1) {
return n;

}

int x = 0;
int y = 1;
for (int i = 2; i <= n; i++) {

int temp = x + y;
x = y;
y = temp;

}

return y;

}

Commentary: Most provided good answers for this problem as well. Large errors usually
revolved around not understanding the question and writing a method that performed a fun-
damentally different task. Small errors were in the details of computing the exact Fibonacci
number requested.

5

5. Question: (15 points) Write a method that takes as parameters two pointers to arrays of int
and compares them for multiset equality : that is, the two arrays are considered equal if they
contain the same number of each value. The order in which the values appear is irrelevant;
what matters is that for each value in one array, there must be a unique, equal value in the
other array. For example, the following two arrays are equal multisets:

3 9 8 2 9 2 4 7
9 9 7 2 2 3 8 4

Answer:

public static boolean multisetEqual (int[] a, int[] b) {

if (a.length != b.length) {
return false;

}

int j;
boolean[] matched = new boolean[b.length];
for (int i = 0; i < a.length; i++) {

for (j = 0; j < b.length; j++) {

if ((a[i] == b[j]) && (!matched[j])) {
matched[j] = true;
break;

}

}

if (j == b.length) {
return false;

}

}

return true;

} // multisetEqual

Commentary: There are a number of different approaches that could legitimately be used
for this problem. The one presented above tries to match each element in a with an element
in b, using an array of boolean to keep track of elements from b have already been matched
to avoid double-matchings.
One popular but not fully legitimate approach was to create a “counts” array in which you
counted the number of occurrences of each value the arrays. You have no information about the
range of values that appear in these arrays. Thus, to find the minimum and maximum values
and then create an additional array that spans that range ignores that the size of the counts
array could be well beyond the capacity of a normal machine. An additional and common
error in solutions that used this method was to assume (incorrectly) that all values in the
original arrays would be positive, thus not compensating for negative values when accessing
the counts array. Nonetheless, use of this approach only cost a modest number of points, as it
is an otherwise correct strategy.

6

6. Question: (15 points) Matrix addition involves taking two 2-D arrays of the same height and
width (let’s call them A and B) and then, for each position in the matrices, adding the value
from A in that position to the value from B in that position and placing it is a third matrix,
C, in that position. Thus, matrix addition takes this form (for two 3× 3 matrices): A1 A2 A3

A4 A5 A6

A7 A8 A9

×
 B1 B2 B3

B4 B5 B6

B7 B8 B9

 =

 A1 + B1 A2 + B2 A3 + B3

A4 + B4 A5 + B5 A6 + B6

A7 + B7 A8 + B8 A9 + B9

Write a method that accepts 3 pointers to 2-D arrays of double (that is, three matrices). This
method should determine whether one of the matrices is the result of matrix addition
of the other two.

Answer:

public static double[][] whichIsSum (double[][] x,
double[][] y,
double[][] z) {

if (isSum(x, y, z)) {
return x;

} else if (isSum(y, x, z)) {
return y;

} else if (isSum(z, x, y)) {
return z;

} else {
return n;

}

} // whichIsSum

public static boolean isSum (double[][] s, double[][] a, double[][] b) {

for (int i = 0; i < s.length; i++) {
for (int j = 0; j < s[0].length; j++) {

if (s[i][j] != a[i][j] + b[i][j]) {
return false;

}

}
}

return true;

} // isSum

Commentary: This question is easy to answer if you break your solution into two methods,
as shown above. As a single method, a solution would be unwieldy. Testing any one matrix
as a sum of two other matrices is just a matter if testing each position in the one matrix is
the sum of the same positions in the other two. With a method that can perform such a test,
another method can call on that method with each possible arrangement of matrices. Since
addition is commutative, the number of combinations is small.
The most common error here was to assume that your method(s) should test only one ar-
rangement of matrices—that is, that the only test required was to determine whether the first
was the sum of the second and third. Doing so ignored an important part of this problem.

7

7. Question (20 points) Consider a program that is invoked thusly:

java Triangles 37

The main() method of the Triangles program needs to convert the command line argument
(here, 37) into an int and then pass that int to an already written printPattern() method.
Write the main() method described above. Furthermore, assume that there is no such
method as Integer.parseInt(). Thus, you must also write a method named myParseInt()
that converts a string representation of an integer value (as a sequence of numeral characters)
into an actual int. Your method should throw a pointer to a NumberFormatException object
if it cannot perform the conversion, and main() should catch that exception, printing a helpful
error message when it occurs.

Answer:

public static void main (String[] args) {

if (args.length != 1) {
System.out.println("USAGE: java Triangles <pattern size>");
System.exit(1);

}

int size = myParseInt(args[0]);
printPattern(size);

}

public static int myParseInt (String s) {

boolean isNegative = false;
int i = 0;
if (s.charAt(0) == ’-’) {

isNegative = true;
i = 1;

}

int v = 0;
while (i < s.length()) {

if ((s.charAt(i) < ’0’) || (s.charAt(i) > ’9’)) {
throw new NumberFormatException();

}

v = (v * 10) + ((int)(s.charAt(i) - ’0’));
i++;

}

if (isNegative) {
v = -v;

}

return v;

}

Commentary: The most common problem was the use of length if-then-else chains to convert

8

each character into an integer value. The second most common (and more significant) error
was to forget that some such conversion had to be performed: that is, some forgot that the
value of the character ’5’ is not the integer 5.
One common approach was to calculate the exact contribution of each character to the final
value right away. That is, for the string 5̈14¨, the first step was to multiply 5 by 102. Unfor-
tunately, this approach requires exponentiation—an operation that is not available in Java (at
least not without a method designed to perform it). As the above approach shows, it’s also
not necessary. (Do you see how it works?)
The final common error was the handling of strings that could not be converted into integers.
Some forgot to test for invalid (non-numeric) characters at all; others handled such errors by
printing an error message and exiting. The only correct handling of such strings was to create
and throw a NumberFormatException object.
Note that the handling of negative numbers was not critical, but it is better for your method
to have been able to handle it.

9

8. Question: (20 points) You have three types of stamps at your disposal for placing postage on
letters and mailing them: 1-cent stamps, 11-cent stamps, and 37-cent stamps. You mail lots
of very oddly shaped and weighted packages, so you often need unusual amounts of postage.
You just dispise licking the awful adhesive backing of the stamps, so you find it worthwhile to
lick as few as possible.
Complete the body of the following recursive method that searches for the fewest stamps
possible to create the exact desired postage. The method must return a 3-element array where
the 0th, 1st, and 2nd elements of the array indicate the number of 1−, 11−, and 37−cent
stamps needed.

public static int[] makePostage (double postageNeeded) {

Answer: The whole class (although your answer only needed the makePostage method and
any non-trivial supporting methods.

class MakePostage {

public static void main (String[] args) {

if (args.length != 1) {
System.err.println("USAGE: java MakePostage <postage amount in cents>");
System.exit(1);

}

int amount = Integer.parseInt(args[0]);
int[] result = makePostage(amount);

System.out.println(" 1 cent stamps: " + result[0]);
System.out.println("11 cent stamps: " + result[1]);
System.out.println("37 cent stamps: " + result[2]);

}

public static int[] makePostage (int amount) {

if (amount < 0) {
return null;

} else if (amount == 0) {
return new int[3];

}

int[][] postageMatrix = new int[3][];
postageMatrix[0] = makePostage(amount - 1);
postageMatrix[1] = makePostage(amount - 11);
postageMatrix[2] = makePostage(amount - 37);

int[] stampCounts = new int[3];
for (int i = 0; i < 3; i++) {

stampCounts[i] = sum(postageMatrix[i]);
}

int smallestIndex = minIndex(stampCounts);
if (smallestIndex == -1) {

return null;
}
postageMatrix[smallestIndex][smallestIndex]++;

10

return postageMatrix[smallestIndex];

}

public static int sum (int[] x) {

if (x == null) {
return -1;

}

int sum = 0;
for (int i = 0; i < x.length; i++) {

sum = sum + x[i];
}

return sum;

}

public static int minIndex (int[] x) {

int minIndex;
for (minIndex = 0; x[minIndex] == -1; minIndex++) {}

for (int i = minIndex + 1; i < x.length; i++) {

if ((x[i] < x[minIndex]) && (x[i] != -1)) {
minIndex = i;

}

}

return minIndex;

}

}

Commentary: This was a hard problem, particularly in getting all of the details right. Most
particularly, finding a way to end the recursion, to record the correct information about the
stamps, and to exclude results from recursive calls on impossible (i.e. negative) amounts of
postage was tricky. I did not expect anyone to get all of those details right, and in truth,
nobody did. The above solution is a bit tricky—be sure you see how it really works.
It was more important that you show a basic strategy for searching for the right combination
of postage (one major source of error) and for returning to the originally caller an array of int
that reflected how many of each stamp to use (another major source of error). The types of
errors here varied widely.
Note that in my solution, I used an integer number of cents instead of a floating-point number
of dollars. The problem asked that you use a double, and I graded it with that requirement.
However, in real life, use of double values was problematic because of rounding errors (e.g.
0.03 − 0.01 = 0.19999999998 because of precision issues that we never discussed.) Thus, my
solution actually works, but it does not exactly conform to the question as asked.

11

