CS 11 — Mid-term exam #2 ANSWERS

1. QUESTION: (30 points) Write a method that performs binary search on an array of int. This
method should search for a value specified by the caller and return the index at which the
value is found or -1 if it does not exist in the array. The method should begin like this:

public static int binarySearch (int[] x, int v) {

ANSWER: Although this method can be either recursive or non-recursive, here is a recursive
version:

public static int binarySearch (int[] x, int v) {
return doBS(x, v, 0, x.length - 1);
}
public static int doBS (int[] x, int v, int lower, int upper) {

if (lower > upper) {
return -1;

3

int mid = (lower + upper) / 2;
if (x[mid] == v) {
return mid;
} else if (x[mid] < v) {
return doBS(x, v, lower + 1, upper);
} else {
return doBS(x, v, lower, upper - 1);

}

}

COMMENTARY: Many forgot the difference between binary search and linear search, and thus
wrote a method that performed the (much simpler) latter type of search. For those that
attempted a true binary search, the most common problems were in computing the middle
index in a way that progressively halved the range correctly.



2. QUESTION: (35 points) Consider the game simple sudoku. This game is played on a 9x9 grid
of integers whose values are between 1 and 9. A solved simple sudoku grid contains one of each
value (1 to 9) in each row and each column. The game begins with only a few values, scattered
around the grid, and the player must fill in the remaining values to construct a solution.
Write a method named testGrid that accepts a pointer to a simple sudoku grid, represented
as a two-dimensional array of int, and then tests that grid to determine if it is a solved grid.
That is, your method must return true if the 2-D array is of the correct size, each row contains
the values 1 to 9, and each column contains the values 1 to 9; it must return false otherwise.
Hint: It may be useful to write one or more supporting methods that testGrid calls to perform
repeated tasks.

ANSWER: This method is a simplified version of what you’ve done for project-3a:
public static boolean testGrid (int[][] grid) {

if (grid.length '= 9) {
return false;

}
for (int i = 0; i < 9; i++) {

if (grid[i].length != 9) {
return false;

}
for (int v = 1; v <= 9; v++) {

boolean foundRow = false;
boolean foundColumn = false;

for (int j = 0;
(j < 9) && ('foundRow) && (!foundColumn);
j++) {

if (grid[i][j] == v) {
foundRow = true;

}

if (gridlil[j] == v) {
foundColumn = true;

}

}

if (!foundRow || !foundColumn) {
return false;

}

}

COMMENTARY: The most common mistakes were not to check the length of every column in
the grid, not to detect repeated values in the same row/column, or to construct a testing loop
that would return true prematurely (before all values had been tested for all rows/columns).



3. QUESTION: (35 points) The strangest thing happened this morning. When you woke up,
sitting next to your bed was a stack of one-thousand dollar bills, a list of n numbers, and a
note that read:

These are the prices at which Google stock will sell over the next n days, starting
today. You may choose to buy this stock on one particular day and then sell it on
some later day, but you only get to make one purchase and sale—if you perform
multiple purchases and sales, I will change the prices! Good luck!

A strong feeling came over you that these numbers were real, and that you were meant to use
them to get rich. However, the list of numbers is long! On which day should you buy and on
which day should you sell to make the greatest profit?

Write a method that accepts an array of double containing these n values. This method
should determine, based on the array, the day on which you should buy your Google stock
and the later day on which you should sell it to make the maximum single buy/sell profit. It
should print these values to the user.

ANSWER: A pair of nested loops does the trick:

public static void maximizeProfit (double[] values) {

int buyDay = 0;
int sellDay = O;
double maxProfit = 0.0;

for (int i = 0; i < values.length; i++) {
for (int j = i; j < values.length; j++) {

double profit = values[j] - values[i];
if (profit > maxProfit) {

maxProfit = profit;
buyDay = 1i;
sellDay = j;

}

System.out.println("Buy on day " + buyDay +
"and sell on day " + sellDay +
"for a profit of " + maxProfit);

}

COMMENTARY: By far the most common error was to search for the minimum and the maxi-
mum values as the buy and sell days. This approach violates the critical requirement that the
purchase occur before the sale. A slightly better (but still flawed) variation was to search for
the minimum value and then find the highest value that follows that minimum. While this
doesn’t violate the buy-then-sell requirement, it doesn’t guarantee maximal profit. (Be sure
that you see why!)

You must consider every pair of possible days for which the purchase day precedes the sale
day, and so the above loops take that approach.



