1. (20 points) Consider the code fragment below. Mark each location where an automatic cast will occur. Also find each location where an explicit cast must be inserted for the code to compile successfully, and correct the line with that explicit cast included. [Note: Be aware that each line may require more than one cast!]

```java
byte b = 13;
int i = b;
char c = i;
int i2 = c + i;
char c2 = c + 3;
boolean b = (i < c);
```

2. (15 points) The following method contains an error that will prevent it from compiling. Find and correct it.

```java
public static int getPositiveInt () {
    do {
        System.out.print("Enter a positive integer: ");
        int x = Keyboard.readInt();
        if (x <= 0) {
            System.out.println("No good, try again: ");
        }
    } while (x <= 0);
    return x;
}
```
3. (30 points) **Write a method** named `printTable` that accepts a *height* and a *width* as parameters and then prints a table of those dimensions, where the table follows the following pattern:

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20

The above table is the result of calling `printTable(4, 5)`.
4. (25 points) Consider the following program:

class Factorial {

 public static void main (String[] args) {

 int x = calcFactorial(4);
 System.out.println("Final answer = " + x);

 } // main

 public static int calcFactorial (int n) {

 System.out.println("Requested " + n + "!");
 int result;
 if (n == 0) {
 result = 1;
 } else {
 result = n * calcFactorial(n-1);
 }

 System.out.println("Returning " + n + "! = " + result);
 return result;

 } // calcFactorial

} // class Factorial

Provide the output that this program would produce.
5. (10 points) Consider the *Fibonacci sequence*:

0, 1, 1, 2, 3, 5, 8, 13

Specifically, we define it as:

- \(F(0) = 0 \)
- \(F(1) = 1 \)
- \(F(x) = F(x - 1) + F(x - 2) \) if \(x \geq 2 \)

Write a recursive method that calculates a requested Fibonacci number. That is, complete the method below (where the declaration is provided), and use no loop structures.

```java
public static int calcFibonacci (int x) {
```