SYSTEMS I — LAB 5
An introduction to MIPS assembly

In today’s lab, we will do some assembly programming. In particular, we’re going to use a
program that simulates a MIPS CPU, known as SPIM. You’re going to get set up with SPIM,
make sure you can use it to run a program, and then do some assembly coding of your own.

1 Setup to use the MIPS simulator

Logging in: In order to use the MIPS simulator, you must first logon to romulus.amherst .edu
or remus .amherst .edu, which is a UNIX (Linux) machine. To login using Xming, software
that allows you to login graphically to these servers, follow the Windows Xming instructions that
describe how to use this software on the Windows machines in SMudd 014. Notice that this page
also describes how to install and use Xming on your Windows machine. If you have a Mac, follow
the Mac Xming instructions.

One-time setup: Once you have started Xming, you will have a terminal window, within which
there is a shell prompt—that is, a prompt at which you can type commands. At the prompt, type
the following two lines, being sure to include the period that begins the filename on the second
line, and also being sure not to type the dollar sign ($), since that is my representation of the
shell prompt itself for these instructions:

$ “sfkaplan/public/csl6/init
$ source .cshrc

If you get an error message in response to either of these commands, ask for help. (No news is
good news—if you enter the command and the prompt then returns with no intervening messages,
then the command worked.) Note that you should not use these commands again, or else you
might lose some of your work.

Checking your files: If all went well in the previous steps, you should be ready to go. Note that
in the future, you simply need to login, bring up a terminal window, and begin work.

When you first login, you will be working in your home directory—the UNIX analog of your My
Documents folder. The following command (using the lower-case L, not the numeral 1) ...

$ 1s -1
...will list the files and subdirectories (subfolders) in your home directory. In should contain
two new files:

add-two—-numbers.s
formula.s


https://www.amherst.edu/academiclife/departments/computer_science/computing/windows
https://www.amherst.edu/academiclife/departments/computer_science/computing/mac

2 Try running a simple program
Follow these steps to try running a program with SPIM and ensure that it works:

1. First, run Emacs, a programming text editor, to examine the add-two—numbers. s file,
like so:

emacs add-two-numbers.s &

We will discuss what you see here. There is a boilerplate preface, and then the label
__start, which is the marker that will tell the simulator where the instructions for this
program begin. There is also a strange pair of instructions that follow the comment, “Exit
the program.” We will discuss what these are and how they work.

2. Now we’re going to use SPIM itself. Start SPIM with the following command, where the
ampersand (&) is necessary to run the program in the background—that is, SPIM continues
to run while you are allowed to type more commands in your terminal window:

xspim &

3. You should see a new window appear that will have lots of information about the registers
(labeled both by their numbers, RO through R31, and their symbolic names, e.g., $s0).
Among other things, there will also be some buttons in the middle of this window that we’ll
use to control the simulator.

4. Begin by loading a program. Click on the load button. It will bring up a window, in which
you can type add-two—numbers.s and press Enter.

5. You should see the instructions for that program appear in the middle of the window, with
the first instruction highlighted. Notice that some of the instructions aren’t quite what
you saw in the Emacs window. The 11 instruction has been replaced with ori. We will
discuss that 11 is a pseudo-instruction. Also notice that the registers are not given by sym-
bolic names (like $s0) but instead by register number (like $16 for register number 16).
Finally note that data appears in hexidecimal, also known as base 16. We’ll discuss why that
representation has been chosen, and how to read it. Specifically, a hexidecimal digit is one
of 16 values, from 0 to 9, and then from a to f. Thus, here is a table that shows some values
in decimal, binary, and hexidecimal:



decimal | binary | hexidecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 a
11 1011 b
12 1100 c
13 1101 d
14 1110 e
15 1111 f
16 10000 10
17 10001 11
18 10010 12
19 10011 13
20 10100 14
21 10101 15
22 10110 16
23 10111 17
24 11000 18
25 11001 19
26 11010 la
27 11011 1b
28 11100 le
29 11101 1d
30 11110 le
31 11111 1f
32 100000 20

6. Now click on step, so that we can run the program one instruction at a time, and see what
happens. You will get a little window that asks for some more information—you can just
use the default values. Each time you click the step button within that little window, the
current instruction will be executed, and the simulator will move to the next instruction. If
the instruction was supposed to modify a register somehow, look at the register values and
ensure that the value has changed as you expected.

7. When you have stepped through this whole program, be sure that register $s0 has exactly
the value that you thought it would. You can click the reload button, which will present
(so long as you hold down the mouse button) a pull-down menu of one item (assembly



program). Select that to reload and re-set the program. Note that you can run the whole
program, without stepping, by clicking the run button.

3 Make a new, modified program

Now that you have seen what a MIPS assembly program looks like, and you’ve seen how to run one
within SPIM, try writing your own small calculation program. Open formula.s with Emacs,
and complete the program that was started there.

Specifically, after the __start label, insert code to do what the comments suggest. Specifically,
write instructions that will load the given constants into registers, and then write instructions that
carry out the given (simple) formula. The special instructions that end your program are already
provided.

Once written, test your program in SPIM. Move through the program, step by step, and be sure
that the registers change value with each step as you expected.

4 How to submit your work

We will be using the cs16-submit command to turn in programming work. Specifically, you
should submit your completed formula. s like so:

csl6e-submit lab-5 formula.s

This assignment is due on Friday, October 10, at 11:00 am



	Setup to use the MIPS simulator
	Try running a simple program
	Make a new, modified program
	How to submit your work

