
CS 16 Fall 2008 — Mid-term solutions

This is a closed-book, closed-note exam. Answer all of the questions clearly, com-
pletely, and concisely. You have 50 minutes, so be sure to budget your time. All
work should be written in your blue book.

1. Question: (10 points) Use a Karnaugh map to simplify the boolean function
described by the truth table below. Draw your rectangles clearly and express
your result as a boolean algebraic equation—do not draw a circuit.

A B C D | Y

---------------|----

0 0 0 0 | 1

0 0 0 1 | 1

0 0 1 0 | 1

0 0 1 1 | 1

0 1 0 0 | 0

0 1 0 1 | 0

0 1 1 0 | 0

0 1 1 1 | 1

1 0 0 0 | 0

1 0 0 1 | 0

1 0 1 0 | 0

1 0 1 1 | 1

1 1 0 0 | 1

1 1 0 1 | 0

1 1 1 0 | 1

1 1 1 1 | 0

Answer: The map, when laid out, looks something like this:

C̄D̄ C̄D CD CD̄
ĀB̄ 1 1 1 1
ĀB 0 0 1 0
AB 1 0 0 1
AB̄ 0 0 1 0

When the appropriate rectangles are drawn, the simplified form is:
Y = ĀB̄ + ĀCD + ABD̄ + B̄CD.

Discussion: I actually intended a slightly different function, but committed a
transcription error of my own in writing up the question, leaving a slightly less
interesting version of this question.
Difficulties with this question were the common ones: failure to see a wrap-
around opportunity; putting rectangles around values already completely cap-
tured by other, existing rectangles; transcription errors. Overall, though, the
answers revealed a good basic understanding of how Karnaugh maps are used.
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2. Question: (15 points) Recall the basic rules for two’s complement addition
overflow: If the two inputs have the same sign and the output has a different
sign from those two inputs, then overflow has occurred.
Prove that when the carry-in and carry-out of the most significant bit of a ripple-
carry addition differ, that also indicates overflow. That is, show the equivalence
of these two methods of overflow detection.

Answer: Although there are a number of methods for proving this theorem,
the most straightforward is via truth table. For an n-bit number, an−1 and bn−1

are the most significant bits of each input, yn−1 is the most significant result
bit, and ci

n−1 and co
n−1 are the carry-in and carry-out bits, respectively, for the

most significant bit.

ci
n−1 an−1 bn−1 co

n−1 yn−1

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

The bold lines show the two cases where overflow occur. To prove the two
methods of detecting overflow equivalent, notice that when the first technique
(an−1 = bn−1 6= yn−1) obtains, the second technique (ci

n−1 6= co
n−1) does also. Of

equal importance, when the first technique does not obtain, neither does the
second.

Discussion: The most common problems occurred when people attempted a
case-based approach (similar to the one above), but did not thoroughly enu-
merate the cases. In particular, it was common to show that. . .

(an−1 = bn−1 6= yn−1)⇒ (ci
n−1 6= co

n−1)

. . . but many people forgot also to show that . . .

(an−1 = bn−1 6= yn−1)⇐ (ci
n−1 6= co

n−1)
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3. Question: (25 points) The multiplier that we built for lab-4 worked only on
positive integers; it can produce incorrect results on negative numbers (using
two’s complement).
Given that multiplier (4-bit multiplier and multiplicand, yielding an 8-bit prod-
uct), how can it be modified or augmented to correctly multiply any combination
of positive and negative inputs? Draw a circuit to show how this improved
multiplier would be structured.
Note: You may assume high-level components. For example, if you need an
adder, just draw a box and label it with an addition-sign. Just be sure it is clear
what each component does. If you must invent new components that we’ve not
used, make clear by description or diagram how it would be constructed.

Answer: In lieu of a diagram, I will describe one possible solution. Given the
two 4-bit inputs, a and b, ensure that both values are non-negative before feeding
them into the multiplier. So, for a, feed it into input 0 of a multiplexer; then
take a copy of a and pass it through a negation circuit to form −a, feeding this
result into input 1 of the multiplexer. Finally, the control on this multiplexer
should be a3—that is, if the value is non-negative, select a, and if it is negative,
select −a. The output of the multiplexer should be one of the inputs to the
multipler. Do the same for b, such that the second input to the multipler is
either b (if b is non-negative) or −b (if b is negative).
The multipler is now operating on two non-negative values, and will produce a
non-negative, 8-bit product y. However, depending on the signs of the original
a and b values, the sign of final product should perhaps be negative. Therefore,
again feed y into input 0 of a multiplexer, and feed −y into input 1. The
selection on this multiplexer should be determined by a3 ⊕ b3—that is, if the
signs are the same, then the result should be y, but if the signs of a and b differ,
the true product is −y.

Discussion: Many people thought to take the xor of the most significant
bits of each input in order to determine when to negate the result from the
multiplier. However, many people either (a) forgot also to negate any negative
inputs before feeding them into the multiplier, or (b) thought that it would be
sufficient to strip off that most significant bit, ignoring that negation of a two’s
complement number involves more than just removal of the sign bit.
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4. Question: (25 points) Consider the following sequence of 1-bit values:

0, 1, 1, 1, 0

Construct a clocked circuit that repeatedly emits this pattern of 1-bit output
values every 5 clock cycles.
Note: You may express any combinational functions either as explicit gates
or by use of a ROM. If you use a ROM, it must be clear which lines provide
the input address, which lines carry the output data, and what the complete
contents of the ROM are.

Answer: Consider the basic feedback-based counter structure that we have
used: a register stores the counter value, which then serves as the input to
a combinational “incrementor” circuit that calculates the next value of the
counter; the incrementor’s output then serves as input to the register. For this
problem, the counter should count from 0 to 4 and then repeat, tracking the
internal sequence number. We must then add one more combinational circuit
that maps the internal sequence number to the external output.
Therefore, we need a 3-bit register to count from 0 to 4 and wrap around to
0. Here, y = y2, y1, y0 is the current counter value (that is, the output of the
register and the input into the incrementor), while d = d2, d1, d0 is the next
counter value (that is, the output of the incrementor and the input into the
register). Thus, we need to express d as a function of y.
Additionally, we need a combinational “externalizer”—a circuit that maps y
onto a final, 1-bit output, z. Therefore, the truth table for all of these input
and outputs is:

y2 y1 y0 d2 d1 d0 z
0 0 0 0 0 1 0
0 0 1 0 1 0 1
0 1 0 0 1 1 1
0 1 1 1 0 0 1
1 0 0 0 0 0 0

The functions are, therefore:

d2 = ȳ2y1y0

d1 = ȳ2(y1 ⊕ y0)

d0 = ȳ2ȳ0

z = ȳ2(y1 + y0)
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Discussion: Overall, this problem went well for most. There were often errors
in determining the logic for the incrementor, often not counting through quite
the correct sequence (e.g., 0 to 5 instead of 0 to 4). Some tried completely novel
circuits to emit this sequence, and some of them worked, although validating
their correctness was more difficult.
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5. Question: (25 points) Consider the following sequence of 1-bit values:

0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, . . .

That is, between 0’s values, there is first zero 1’s, and then one 1, and then two
1’s, and then three 1’s, and so on. This sequence ends with a 0 is followed by
255 1’s, at which point it should repeat.
Construct a clocked circuit that repeatedly emits this pattern of 1-bit output
values every 32,896 clock cycles.
Note: First, obviously, you cannot just enumerate this pattern—you must
devise a new approach. Second, again assume that you have high-level com-
ponents at your disposal. Third, you again may express any combinational
functions using either gates or a ROM, using the same rules for a ROM as
above.

Answer: To solve this problem, you need two counters: an outer counter, a,
that keeps track of how many 1’s should appear in this portion of the sequence,
and an inner counter, b that counts how many 1’s have been printed in this
portion of the sequence so far. If y is the output of the circuit at each step, then
we can list the register values at each step along with the output produced:

outer counter inner counter sequence output
a b y
0 0 0
1 0 0
1 1 1
2 0 0
2 1 1
2 2 1
3 0 0
3 1 1
3 2 1
3 3 1
4 0 0
4 1 1
4 2 1

. . . . . . . . .
255 254 1
255 255 1
0 0 0

First, notice that a increments only when a = b. Also notice that b = 0⇒ y = 0,
and that b 6= 0 ⇒ y = 1. To control the progression of each counter register,
we need a multiplexer that determines the input into each. Specifically, these
multiplexers should operate as follows:

• Multiplexer for a input: Input 0 is the output of a—that is, the same
value that a already has. Input 1 should be a + 1. The selector for this
multiplexer is the output of a comparitor—that is, a circuit that emits 1 if
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a = b, and 0 otherwise. Thus, when a = b, register a will be incremented;
otherwise, a will retain its previous value.

• Multiplexer for b input: Input 0 is b+1, while input 1 is 0. The selector
on this multiplexer is also the result of the comparitor a = b. Therefore,
when a = b, register b is reset to 0; otherwise, b is incremented.

Assuming this arrangement of the registers, one needs only a simple combina-
tional circuit to compute y = b2 + b1 + b0.

Discussion: Not many people got far with this question. There were some mis-
guided attempts to employ our datapath and control constructs, but those are
for implementing machine code instructions, not for straight sequence counting.
Some people ignored the text of the question and described or drew solutions
that involved some brute-force enumeration of all 32,896 entries in the sequence.
A few managed to approach something like the nested-counters described in the
solution above. Any such ideas were given some non-trivial credit.
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