
CS 11 Spring 2008 — Mid-term exam 1
Answer Key

1. [Question:] (15 points) Consider the code fragment below. Mark each location where an
automatic cast will occur. Also find each location where an explicit cast must be inserted for
the code to compile successfully, and correct the line with that explicit cast included. [Note:
Be aware that some lines may require more than one cast!]

byte b = 13;
int i = b;
char c = i;
int i2 = c + i;
char c2 = c + 3;
boolean b = (i < c);

[Answers and discussion:] People frequently were confused about which casts were au-
tomatic and which had to be forced/explicit. Many people indicated that a particular line
involved an automatic cast, but they did not make clear to which portion of the expression
that cast would apply, thus losing some credit. We will address one line at a time:

• byte b = 13;
No cast is performed or needed here. The compiler identifies 13 as a valid byte constant,
and so this is a case of assigning a byte value into a byte space. If you believed that the
13 would be considered an int, then you would have to insert a forced cast to receive
partial credit. Claiming an automatic cast here is not sensible.

• int i = b;
An automatic cast on b occurs here, converting it from a byte to an int.

• char c = (char)i;
A forced cast must be inserted on i to make that int value fit into a char space.

• int i2 = c + i;
In order to add a char to an int, the compiler will perform an automatic cast on c,
converting it to an int so that addition is really performed on two int values.

• char c2 = (char)(c + 3);
Two casts must occur here. First, addition is only performed on int values. So, c is
automatically cast to an int. Second, to assign the result of the int addition into a
char space, a forced cast must be performed on the addition expression. Many people
caught the

• boolean b = (i < c);
Comparisons must be performed on like types. Therefore, c is automatically cast to an
int so that it may be compared to i. As an alternate answer, one could insert a forced
case on i, making it into a char, thus comparing two char values.
Additionally, note that there is an error in this line. In the first line of the problem, b was
already declared as a byte. Obviously, the question should have, on this line, declared
boolean b2.
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2. [Question] (15 points) Consider the Java code below and answer the questions that follow.

System.out.println("Enter a value for a: ");
int a = User.readInt();
System.out.println("Enter a value for b: ");
int b = User.readInt();

if (a < 0) {
a = -a;

}

int i = 0;
while (i < a) {

int k = 0;
for (int j = 100; j >= b; j--) {
k = j * 2;
System.out.print(k);
System.out.print(’-’);
System.out.println(j);

}

k++;
i = i + 1;

}

(a) What is the output of this code if the user enters 2 for a and 98 for b?

(b) What is the output of this code if the user enters −3 for a and 100 for b?

[Answer] For each case:

(a) 200-100
198-99
196-98
200-100
198-99
196-98

(b) 200-100
200-100
200-100

[Discussion] The most common errors were to get the number of repetitions of any or all of
the loops incorrect. (Interestingly, many people terminated the loops too soon, and nobody
believed that there were extra repetitions.)
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3. [Question] (10 points) The following method contains an error that will prevent it from
compiling. Find and correct it.

public static int getPositiveInt () {

do {

System.out.print("Enter a positive integer: ");
int x = Keyboard.readInt();
if (x <= 0) {

System.out.println("No good, try again: ");
}

} while (x <= 0);

return x;

}

[Answer] The scope of x is too narrow. It ceases to exist at the closing brace before the
while keyword, and thus the use of it in the continuing condition and in the return statement
is invalid. To fix it, x must be declared before the do-while loop, and its previous declaration
must be turned into a simply assignment:

public static int getPositiveInt () {

int x;
do {

System.out.print("Enter a positive integer: ");
x = Keyboard.readInt();
if (x <= 0) {

System.out.println("No good, try again: ");
}

} while (x <= 0);

return x;

}

[Discussion] Many people found the basic problem with this question. The most common
error was to declare x before the do-while, but then not remove (or not specify the removal of)
the existing declaration of that variable. A few people more radically restructured the method,
obtaining an initial input from the user before the loop. Although that modification was more
extensive than necessary, it received full credit if done correctly.
It is worth noting that Keyboard.readInt() differs slightly from our usual keyboard.nextInt().
Although the two are different, they perform an identical task, and few people were distracted
by this detail. A few focused on it; if you did, be aware that I would not base a question like
this one on a that kind of typo. To do so would be to ask a question that reveals nothing
about your understanding of programming and algorithms.
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4. [Question] (30 points) Write a method named printTable that accepts a height and a
width as parameters and then prints a table of those dimensions, where the table follows the
following pattern:

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20

The above table is the result of calling printTable(4, 5).

[Answer] Although there are many ways to write a method that perform this task, here is
one of the simplest:

public static void printTable (int height, int width) {

for (int row = 1; row <= height; row++) {
for (int column = 1; column <= width; column++) {
System.out.print((row * column) + " ");

}
System.out.println();

}

} // end printTable

[Discussion] Many people devised solutions that were anywhere from somewhat to excessively
complex. Either through overly involved arithmetic expressions to control loops, or the exces-
sive use of extra, supporting variables, people managed to confuse themselves and construct
incorrect answers. In general, correct but modestly more complex answers received full credit,
while correct but substantially obfuscated solutions lost a little credit.
A common error was to write an inner loop in which the value to be printed was advanced
using an expression something like: y = y + y. This expression doubles y with each iteration,
thus violating the pattern (which increases by a constant across a row).
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5. (30 points) We want to write a program that allows the user to enter a list of positive numbers
and then prints out the mean number from that list. That is, if the user enters the values 7,
4, 3.5, and 11.5, then the mean is 7+4+3.5+11.5

4 = 26
4 = 6.5.

The main method of this program is:

public static void main (String[] args) {

double x = getMeanFromUser();
System.out.println("Max = " + x);

}

Write the method getMeanFromUser. The user should be able to enter an arbitrary number
of positive values. As soon as the user enters a non-positive value, the program should accept
that value as an indication that the user has no more values to enter. After the user has
entered all of her numbers, the method should return the mean value entered. Do not worry
about a user that enters non-numeric values.

[Answer] Once again, there is more than one way to skin a cat, but here is one straightforward
solution:

public static double getMeanFromUser () {

double userEntry = 0.0;
double sum = 0.0;
int numberEntries = 0;
while (userEntry > 0.0) {

System.out.print("Enter next value (or a negative value if finished): ");
userEntry = keyboard.nextDouble();
if (userEntry > 0.0) {
sum = sum + userEntry;
numberEntries++;

}

}

return sum / numberEntries;

} // end getMeanFromUser

[Discussion] First, note the output typo in which the result is presented as the max. That
superficial error should not have thrown anyone, given the rest of the text of the question.
Most errors on this problem simply involved a failure to keep initialize and update the correct
pieces of information at the correct times. A few emitting output by using System.out.println
instead of returning the mean. Many included entries of 0.0 itself as valid additions to the
sequence of numbers, but the question unambiguous refers to positive numbers, where the first
non-positive value—that is, 0.0 or a negative value—would terminate the entry of new values.
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