
SYSTEMS I — LAB 5
An introduction to k-system assembly programming

In today’s lab, we will do some assembly programming. In particular, we’re going to use a
program that simulates the k-system CPU—an artificially created system for this course. You’re
going to get set up with this simulator and its corresponding assembler. Then you will write some
assembly code of your own, which you will then test with the assembler and simulator.

Introduction to assembly programming
The following steps will lead you through your first assembly language program. Here, the goal
is to get used to the tools involved in writing, assembling, testing, and debugging these programs.
After you get this pre-written and simple program working, you will then need to write a program
of your own.

1. Login: In order to use the assembler and simulator, you must first logon to
romulus.amherst.edu or remus.amherst.edu, which are UNIX (Linux) systems.
To login using Xming, software that allows you to login graphically to these servers, follow
the Windows Xming instructions that describe how to use this software on the Windows
machines in Seeley Mudd 014. Notice that this page also describes how to install and use
Xming on your Windows machine. If you have a Mac, follow the Mac Xming instructions.

2. Make a directory: When you first login, you will be working in your home directory—
the UNIX analog of your My Documents folder. Within this directory, you should make a
subdirectory (a folder) for your work for this lab. Specifically, enter the following command
to create and then change into that subdirectory:

$ mkdir lab-5
$ cd lab-5

3. Get the assembly code: Use the following command to obtain a sample assembly code
program, being careful to include the tilde (˜) before my username and the trailing space
followed by a period (.):

$ cp ˜sfkaplan/public/cs16/lab-5/add-two-numbers.asm .

4. Modify the assembly code: Run Emacs, a programming text editor, to examine the
add-two-numbers.asm file. In the following command, be sure to include the trail-
ing ampersand (&), causing the text editor to run in the background—that is, to run while
allowing you to enter more commands:

$ emacs add-two-numbers.asm &

1

https://www.amherst.edu/academiclife/departments/computer_science/computing/windows
https://www.amherst.edu/academiclife/departments/computer_science/computing/mac
http://en.wikipedia.org/wiki/Text_editor

We will discuss, in the lab, what the components of this file are and how to interpret them.
Furthermore, you should read this documentation/tutorial on using Emacs. Get familiar
enough to change the constants assigned into %G0 and %G1 in the first two instructions to
values of your choice.

5. Assemble: Use the k-system assembler to translate the text-based assembly code into binary
machine code, like so:

$ k-assembler add-two-numbers.asm
DEBUG [1]: @0x00000000: COPY %G0 1[0x00000001]
DEBUG [1]: @0x00000010: COPY %G1 16[0x00000010]
DEBUG [1]: @0x00000020: ADD %G2 %G0 %G1
DEBUG [1]: @0x00000030: JUMP @+end[0x00000000]

6. Load the simulator: Start the k-system simulator—a program that reads and and runs the
machine code produced by the assembler, just like a real CPU would:

$ k-simulator add-two-numbers.vmx
DEBUG [1]: Bus.addDevice(): newDevice =

[type = RAM, (0x00001000, 0x00005000)]
DEBUG [1]: Bus.addDevice(): newDevice =

[type = ROM, (0x00007000, 0x00007040)]
[pc = 0x00007000]:

We will examine in class what this output means. Most importantly, the simulator leaves
you at a prompt that shows the current value of the program counter (PC). You will notice
that this number (and some others shown by the assembler and simulator) are shown in
hexadecimal, also known as base 16. We will discuss why that representation has been
chosen, and how to read it. Specifically, the prefix on a number to indicate that it is in
hexadecimal is 0x. Moreover, a hexidecimal digit is one of 16 values, from 0 to 9, and then
from a to f . Thus, here is a table that shows some values in decimal, binary, and hexidecimal:

2

https://www.amherst.edu/offices/it/help/software/unix/emacs
http://en.wikipedia.org/wiki/Hexadecimal

decimal binary hexidecimal decimal binary hexidecimal
0 0000 0 16 10000 10
1 0001 1 17 10001 11
2 0010 2 18 10010 12
3 0011 3 19 10011 13
4 0100 4 20 10100 14
5 0101 5 21 10101 15
6 0110 6 22 10110 16
7 0111 7 23 10111 17
8 1000 8 24 11000 18
9 1001 9 25 11001 19

10 1010 a 26 11010 1a
11 1011 b 27 11011 1b
12 1100 c 28 11100 1c
13 1101 d 29 11101 1d
14 1110 e 30 11110 1e
15 1111 f 31 11111 1f

32 100000 20

7. Take a step: Make the simulator execute a single instruction—take a step—like so:

[pc = 0x00007000]: step 1
DEBUG [0]: [@0x00007000]
0x 00024800 00000003 00000001 00000000:
COPY %0x00000003 0x00000001

[pc = 0x00007010]:

First, the simulated CPU fetched the COPY instruction at main memory address 0x7000,
and carried it out by loading the immediate constant 0x1 into register %3, also known to us
as %G0. Second, the simulator incremented the PC so that it points to the next machine code
instruction in main memory at address 0x7010. The simulator is now paused in that state,
ready to execute the next instruction, waiting for your command.

8. Verify the step: Just to be sure that this instruction was performed correctly, we can check
the contents of register %G0, a.k.a., %3. Specifically, the following command will show the
contents of that register:

[pc = 0x00007010]: showregister %3
%3 = 0x00000001

9. Take a few more steps: Make the simulator complete the program, reaching the infinite
loop that ends the program:

3

[pc = 0x00007010]: step 4
DEBUG [0]: [@0x00007010]

0x 00024800 00000004 00000010 00000000:
COPY %0x00000004 0x00000010

DEBUG [0]: [@0x00007020]
0x 00064440 00000005 00000003 00000004:
ADD %0x00000005 %0x00000003 %0x00000004

DEBUG [0]: [@0x00007030]
0x 00112000 00000000 00000000 00000000:
JUMP ->@+0x00000000

DEBUG [0]: [@0x00007030]
0x 00112000 00000000 00000000 00000000:
JUMP ->@+0x00000000

[pc = 0x00007030]:

10. Verify the result: The final result of the program should be contained in register %G2, or
%5. So:

[pc = 0x00007030]: showregister %5
%5 = 0x00000011
[pc = 0x00007030]:

Notice that the output of the showregister command is a hexadecimal value. To convert
that value into decimal, you can use your brain along with paper and pen, or you can use
Google Calculator.

If you want to see some of the other capabilities of the simulator, simply enter the command
help to see a command listing. We will discuss, in lab and as these assignments progress, how to
use most of them.

Make a new, modified program
You have seen what an assembly code program looks like, and you have seen how to assemble
and execute the program using the simulator. Now write your own small calculation program.
Specifically, start by copying a skeleton assembly code file:

$ cp ˜sfkaplan/public/cs16/lab-5/formula.asm .

Open this new file, formula.asm, with Emacs:

$ emacs formula.asm &

Specifically, after the __start label, insert code to do what the comments suggest. Specifically,
write instructions that will load the given constants into registers, and then write instructions that
carry out the given (simple) formula.

Once written, assemble your program and then run it in the simulator. If you find errors, edit
the assembly code, run the assembler again, and then run the simulator again. Repeat this edit-
assemble-simulate cycle until the program operates correctly.

4

http://www.google.com/search?hl=en&client=safari&rls=en&q=0x11+in+decimal&aq=f&oq=&aqi=
http://www.google.com/search?hl=en&client=safari&rls=en&q=0x11+in+decimal&aq=f&oq=&aqi=

Make a third, more challenging program
Copy one more skeleton assembly code file:

$ cp ˜sfkaplan/public/cs16/lab-5/find-max.asm .

One this file with Emacs. In it, you will find a comment that explains the goal of this program.
Specifically, you must write instructions that examine each of the length values listing following
the label array, and find the maximum of those values. That maximum should be left in the main
memory space labeled max.

In order to write this program, we will have to discuss main memory locations, how arrays of
integers are arranged and used, and how pointers—main memory addresses—can be used to move
through arrays. We will discuss these concepts during the lab and during lectures.

How to submit your work
We will be using the cs16-submit command to turn in programming work. Specifically, you
should submit your completed formula.asm and find-max.asm, like so:

cs16-submit lab-5 formula.asm find-max.asm

This assignment is due on Monday, November 9, at 11:00 am

5

