
Fundamental Systems Structure

Core concepts in CPU architecture, the memory hierarchy,
compilers, and operating systems

Scott F. H. Kaplan
sfkaplan@cs.amherst.edu

1

Contents

1 Introduction 3
1.1 Why this book? . 3
1.2 Topic progression . 4
1.3 Supporting software . 5
1.4 How to read this book . 5

2 Digital Logic 6
2.1 A motivating example: Adding two integers 6

2.1.1 Binary numbers . 6
2.1.2 Addition, take I . 8

2.2 Propositional Logic I . 10
2.2.1 An example . 10
2.2.2 Generalizing operators . 12
2.2.3 Composing propositional functions 12
2.2.4 Proper notation . 13

2.3 Binary addition meets propositional logic . 14
2.4 Gates and Propositional Logic: Where the rubber meets the road 16

2.4.1 Water gates . 16
2.4.2 Electronic silicon gates . 18
2.4.3 Representing logic functions with gates 18

2.5 Foreshadowing: Basic adder circuits . 19
2.5.1 A 1-bit half-adder . 19
2.5.2 A 4-bit ripple-carry adder . 20

2.6 More propositional logic . 23
2.6.1 Boolean algebra . 23
2.6.2 The generality of truth tables . 24
2.6.3 Normal forms . 25
2.6.4 Minimal operators . 27

2.7 Circuit simplification . 29
2.7.1 Karnaugh maps for 2-input functions 29

2

Chapter 1

Introduction

Computing devices are pervasive. A great effort is required, in our society, to avoid their
use for all sorts of activities. Some of those activities are obvious: sending email; browsing
the web; using a word processor or spreadsheet; playing video games. However, computing
devices are used in a much wider variety of devices: cars; airplanes; watches and clocks;
mobile telephones; portable music players; televisions; cameras; bank ATM’s. However, few
people who use these devices understand how they work. That they are so useful to so many
people, without those people understanding their structure or inner function, is a testament
to their design, hiding their complex inner workings as they perform only seemingly simple
tasks.

However, some people must understand how these systems are designed and structured.
However, for many, the workings of a simple calculator are a mystery, let alone a full-fledged,
modern computer system.

1.1 Why this book?

Computer systems comprise a large number of components or layers, and each of these is
commonly presented separately from the others. Thus, gaining a fundamental understanding
of how such a system could be constructed requires a number of texts and, perhaps, and
number of academic courses. Additionally, each of these texts and courses tends to delve
into one system component in detail, making it difficult to separate the essential and basic
concepts and structures from various refinements and optimizations for that component.

This book, instead, provides a single, unified presentation of the fundamental structure of
a complete computing system. It begins with the lowest level—digital logic—and proceeds
to compose the capabilities at each level to develop the next. Ultimately, it presents the
basic structure of a CPU and memory bus, the design of a compiler, and the structure
of an operating system kernel with its basic components. As a whole, this book presents
one simple way of developing a complete computing system, bottom to top. It addresses
the fundamental concepts required for this design, stripping away the confusing details that
come with the development of a full-featured, optimized computing system.

By reading this entire book, or by taking courses that follow the structure of this book, you
will ultimately see how a complete computing system works. You will not know the details

3

of any one real-world system, but you will understand the core concepts that will allow you
to grasp those details of any such system. Moreover, you will be able to delve into each
component or layer and understand not only the deeper concepts, but also how that layer
interacts with others. It is this interaction between layers that is critical to system design
and use, but is often lost in the one-component-at-a-time approach taken by most texts and
courses.

1.2 Topic progression

This text takes a bottom-up approach. That is, it will begin with the most simple tools and
concepts, and then build them up, one layer at a time, toward more complex and capable
tools and concepts. Specifically, we should end with a complete (if simplified) computing
system for which we can write complex programs and run many of them at once.

This approach is in contrast to the (predictably named) top-down approach. For that
approach, the text would have begun with a complete, programmable computing system, and
then explained its workings by incrementally delving down to the more simple and detailed
layers. Each of these two approach has advantages and disadvantages. Examination of them
will reveal why this book takes the bottom-up approach.

The top-down approach has the advantage that the motivation for each layer, as the
presentation progresses, is clear. If you begin with the premise that you want a computer
system for which you can write and run multiple, complex programs, then it is clear why one
would begin the presentation with such a system. In order to understand how that system
works, you then begin to delve down into the layers below it, carrying with you the clear
motivation for understanding those layers.

The bottom-up approach lacks this ease of motivation. For example, when beginning with
something so simple as digital logic, it is not immediately and intuitively clear to the reader
why this topic is relevant. It is therefore the responsibility of the writer to explicitly provide
the motivation for understanding this layer of the system, while deferring any understanding
of how this topic relates to the entire system.

In spite of this problem with the bottom-up approach, is does have one wickedly important
advantage: there need not be any mysteries. When beginning with the most simple
layer, everything about that layer—its concepts, implementation, and applications—can all
be explicitly explained. Then, with the advantage of fully understanding that lowest layer,
the presentation can progress to the next layer, drawing upon the fully demystified layer
below. In this way, when the presentation may reach its top level—a complete computational
system—then every aspect of the system is explained and understood. No component is a
mystery, and the interaction and function of all components can be seen.

In contrast, the top-down approach suffers from seemingly mysterious components, layers,
and concepts until the very end is reached. When you begin with the complete system,
none of its workings are understood. As you delve into the lower layers, you learn how each
layer works, but you do so by making assumptions about the yet uninvestigated layers below,
whose workings are a mystery. As you uncover the mystery of each layer, you must remember
how it relates to the layers above it, and, ex post facto, piece together their relationship.

The purpose of this text and courses that follow it is to demystify the workings of com-

4

putational systems. Therefore, it is more important that, during the journey of discovery,
nothing is left as a mystery. At every step, you should see how the current topic is supported
by all of the levels below it, with full knowledge of the concepts and the implementation of
those levels. We therefore will follow the bottom-up approach, explicitly motivating each
level, and building upon tools and concepts that have already been thoroughly developed.

1.3 Supporting software

[SFHK: Add this when the simulator/assembler/compiler are done.]

1.4 How to read this book

[SFHK: write me]

5

Chapter 2

Digital Logic

You have likely heard that computers work in “binary”—all 0’s and 1’s. But what does
that mean? How can a collection of 0’s and 1’s represent numbers, or text, or pictures, or
movies? How cna a program be made of nothing but 0’s and 1’s? That is, how can a group
of 0’s and 1’s tell a machine what to do and when to do it?

We will answer some of these questions directly. For example, representing everyday num-
bers, such as 3, 127, is merely a matter of learning base-2 numeric representation, which
is addressed in Section 2.1.1. However, more complex computing activities, such as using
YouTube, are much more difficyult to grasp at the level of 0’s and 1’s. Doing so is akin to
trying to understand a recipie for pumpkin pie by examining the interactions of the electrons,
protons, and neutrons in a cookbook.

Although all modern computing is ultimately the manipulation of these 0’s and 1’s, comput-
ers cannot really be understood only at that level. Computer systems are better understood
as a collection of layers, where the manipulation of binary numbers are at the bottom layer,
and complex activities like Google Earth are at or near the top.

This chapter addresses that lowest level upon which all computing systems are built. It will
build the foundation for representing and manipulating the 0’s and 1’s. Directly upon that
foundation, we will be able to build circuits that perform basic arithmetic functions; later,
we will use other, similar circuits that act as memory to store 0 and 1 values—data—for
later.

2.1 A motivating example: Adding two integers

Of all the complex calculations and operations that a computing device can perform, among
the most simple and intuitively understandable is integer addition. specifically, let us consider
the addition of two whole numbers—non-negative integers (0, 1, 2, . . .). How can we make a
machine that will add any two such numbers (e.g., 45, 127 + 6, 056)?

2.1.1 Binary numbers

Knowing that we will later use devices that can manipulate 0’s and 1’s, we will begin by
translating our problem into that form. That is, we want to represent the two values to be

6

http://www.youtube.com
http://earth.google.com

decimal binary
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
16 10000
17 10001
18 10010
19 10011
20 10100

Table 2.1: The integers 0 to 20 in both decimal and binary.

added (the inputs) as well as their resulting sum (the outputs), using only the digits 0 and
1.

Typically, people represent numbers using the set of digits from 0 to 9, also known as base
10 or decimal notation. Here, we need to represent numbers in base 2 or binary notation.
We will use the binary digits—bits, for short—0 and 1.

When counting in decimal, we can imagine an odometer. When the 1’s position contains
the final digit, 9, and we then want to advance to the next number, the 1’s position “rolls
over” to a 0 again while the adjacent 10’s position advances to a 1. More generally, each
position advances from 0 to 9, and then it will return to 0 as the next, more significant
position advances by one digit.

For binary numbers, imagine an odometer for which each position cycles not though the
digits from 0 to 9, but only through the digits from 0 to 1. If the digit at a position is a 1,
and we want to advance the counter to the next number, then that position “wraps around”
to 0 and advances the digit at the next, more significant position. For example, Table 2.1
shows the whole numbers from 0 to 20.

To further develop an intuition about binary notation, consider how to decompose the
digits of a decimal number into digits of differing significance. For example, 6, 398 can
be decomposed into 6 thousands, 3 hundreds, 9 tens, and 8 ones. We can represent this
decomposition as a collection of multiplications and additions, as shown in Table 2.2. Of
course, the sum of the decomposed values shown in the bottom row is the original number.

7

http://en.wikipedia.org/wiki/Odometer

thousands hundreds tens ones
6 3 9 8
× × × ×

103 102 101 100

q q q q
6, 000 300 90 8

Table 2.2: Decomposition of the decimal number 6, 398.

thirty-seconds sixteens eights fours twos ones
1 0 1 1 0 12

× × × × × ×
25 24 23 22 21 20

q q q q q q
32 0 8 4 0 110

Table 2.3: Decomposition of the number 1011012 = 4510.

Binary numbers are similar, but instead of there being positions for 1’s, 10’s, 100’s, etc.,
there are positions for 1’s, 2’s, 4’s, 8’s, etc. Table 2.3 shows an example of decomposing a
binary number. In this table, notice that, now that we are using two numerical notations,
each value is tagged with a subscript of 2 or 10 to indicate whether the value is binary or
decimal, respectively. Also notice that if you sum the decimal values into which the binary
number is decomposed, you obtain the decimal reprensetation of the same number—that is,
you will have converted the binary representation into a decimal one.

Much like each decimal number can be decomposed into a sum of power-of-10 units, bi-
nary numbers are decomposed into a sum of power-of-2 values. More importantly, any whole
number can be represented in either decimal and binary—the two are equivalent. We should
also note the difference between a number and its representation. No matter the represen-
tation of a number—45 (decimal), 101101 (binary), XLV (roman numerals)—the underlying
number that these symbols represent is the same.

2.1.2 Addition, take I

In order to determine what concepts and devices we need to perform addition, we must first
see how binary addition is performed. Let us review the simple mechanics of decimal addition.
The two values to be added must be aligned by positions of significance: the 1’s must be
aligned, as must the 10’s, 100’s, etc. As an example, consider the additon of two four-digit
decimal numbers: x = 3, 28110 and y = 4, 75310. We decompose the variables that represent
these values to ease presentation of the arithmetic steps. Specifically, x = (x3, x2, x1, x0),
where x3 = 3, x2 = 2, x1 = 8, and x0 = 1. Similarly, y = (y3, y2, y1, y0), and for this specific
example, y3 = 4, y2 = 7, y1 = 5, and y0 = 3. Thus, our addition operation begins with the
configuration shown in Table 2.4. On the left, we see the configuration for the addition of
the specific values from our example; on the right, we see the generalized operation only on
variables.

8

3 2 8 1 x3 x2 x1 x0

+ 4 7 5 3 + y3 y2 y1 y0

Table 2.4: Configuration of addition for both example values (on the left) and generalized
variables (on the right).

1 1 0 010 c3 c2 c1 c0
3 2 8 110 x3 x2 x1 x0

+ 4 7 5 310 + y3 y2 y1 y0

0 8 0 3 410 c4 r3 r2 c1 c0

Table 2.5: The result of carrying out the addition algorithm on a specific set of values (on
the left) and generalized variables (on the right).

Having formatted the input values as needed, summing x and y follows this algorithm:

1. Let k be the number of digits in the inputs (or, if they are not of the same length,
prepend 0 digits to the shorter one to make it them the same length).

2. Let i = 0, where i indicates the position whose values to add.

3. Let c0 = 0, which is the carry-in to the least significant column. Write that value above
x0.

4. Let zi = xi + yi + ci. This result, zi, is a two-digit result that we decompose as
zi = ci+1ri.

5. Write ri below xi and yi. Write ci+1 above xi+1 and yi+1.

6. Increment i.

7. If i < k then jump back to step 4.

8. Move ck to the left of rk−1, completing the result.

When we apply this algorithm, the result appears as shown in Table 2.5.
This same algorithm can be used for adding binary numbers as well. The only difference is

in how ri and ci are determined—that is, how three binary digits (xi, yi, and ci) are added.
For example, consider adding x = 10112 and y = 01102. In order to see how this addition

progresses, we must consider the possible values that may occur in step 4. One advantage
of binary is, given only two possible digits, one can often exhaustively list all of the possible
inputs and outputs, known as a truth table. Here, we consider adding three one-bit values
ci, xi, and yi). Since each can only take the value 0 or 1, we can construct Table 2.6. Each
of the eight possible sums is shown, in decimal, as z, and then as the two-bit binary value
ci+1ri.

We can then lay out the numbers or variable using the same configuration that we do for
decimal values, and then carry out the addition, using the values in Table 2.6 to determine
the results in step 4. We see how the binary addition is performed in Table 2.7.

9

ci xi yi z ci+1 ri

0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 1 0 1
0 1 1 2 1 0
1 0 0 1 0 1
1 0 1 2 1 0
1 1 0 2 1 0
1 1 1 3 1 1

Table 2.6: The truth table for adding three one-bit values.

1 1 0 02 c3 c2 c1 c0
1 0 1 12 x3 x2 x1 x0

+ 0 1 1 02 + y3 y2 y1 y0

1 0 0 0 12 c4 r3 r2 c1 c0

Table 2.7: The result of carrying out the addition algorithm on a specific set of values (on
the left) and generalized variables (on the right).

2.2 Propositional Logic I

We now know how to carry out a stepwise process—an algorithm—to add two binary num-
bers. However, we must develop a number of concepts in order to design a machine capable
of automatically performing addition.

At the base of these concepts—indeed, at the bottom of all computational devices—is
propositional logic. Specifically, it is the set of formal rules for handling everyday concepts
like and, or, and not.

2.2.1 An example

As an example, consider the following statement:

Tomorrow, if it is not raining, and if the temperature is at least 80°F, then we
will go to the beach.

This statement defines two conditions that must be evaluated to determine whether a visit
to the beach will occur. These two conditions are:

1. A = not raining

2. B = temperature ≥ 80°F

We can further decompose condition 1 as:

• A′ = raining

10

X X̄
f t
t f

Table 2.8: The truth table that defines the not operator.

X Y X and Y
f f f
f t f
t f f
t t t

Table 2.9: The truth table that defines the and operator.

• A = not(A′)

So, we can express whether the conditions for a beach trip are met as:

C = A and B

A, B, and C are Boolean variables : they can take on one the values of true (t) or false
(f). In this example, we must ultimately determine the value of C. To do that, we need to
know both whether it is raining, and the temperature.

First, whether it is raining is itself a Boolean condition—either it is raining or it is not.
Thus, we can assign the value t to A′ if it is raining, and f to A′ if it is not.

Having assigned one of those values to A′, we can determine the value of A. To do so,
we must define the logic operator not. It is a unary operator, which means that it takes a
single Boolean variable as its input. We can define the relationship between the two possible
input values that the single variable may be assigned and the possible output values of the
operator with the truth table shown in Table 2.8. This table shows that the not operator
simply inverts the input value: f becomes t; t becomes f.

Second, the temperature is not a Boolean value; it is, instead, a real-numbered value.
However, we rely on the comparison operator greater than or equal to (≥), which takes two
real-valued inputs and produces a Boolean output value. Thus, B can be assigned the result
of comparing the temperature to 80°F: either the temperature is at least 80°F (B = t), or
it is not (B = f).

Third, given the ability to determine the Boolean values of A and B, we must determine
how the logic operator and functions to calculate C. Again, a truth table can be used to
formally define the commonsense notion that C = t if and only if A = B = t. Table 2.9
shows this truth table.

Ultimately, to evaluate C, one must apply the comparison operator to determine B. More-
over, the not operator should then be applied to determine A. Finally, the and operator
must be applied to A and B in order to obtain the final result.

11

X Y X or Y X xor Y X nor Y
f f f f t
f t t t f
t f t t f
t t t f f

Table 2.10: The truth table that defines the inclusive or (or), exclusive or (xor), and
neither nor (nor) operators.

X3 X2 X1 X0 R
f f f f t
f f f t t
f f t f f
f f t t f
f t f f f
f t f t t
f t t f f
f t t t f
t f f f t
t f f t t
t f t f t
t f t t f
t t f f t
t t f t t
t t t f f
t t t t f

Table 2.11: The truth table for an arbitrary, 4-input, Boolean logic operator.

2.2.2 Generalizing operators

Moving away from this simple example, we can generalize this type of calculation on Boolean
values by defining other binary (that is, two-input) operators (of which and is one). Con-
sider Table 2.10, which is a truth table for the inclusive or (or), exclusive or (xor), and
neither nor (nor) operators. Notice that although each of these binary operators can be
given a name that is a commonsense English word, that need not be the case. A logic oper-
ator can accept any number of Boolean value inputs, and its output values may follow no
commonsense pattern. Consider the quanternary logic operator in Table 2.11, for which no
simple name could be given. This example shows that any combination of input of output
values listed in a truth table can define a valid operator.

2.2.3 Composing propositional functions

As we saw in the example in Section 2.2.1, propositional statements can be composed by
applying additional propositional logic operators to any existing propositional expression.
These compositions create new logic operations that can be expressed as truth tables of

12

A B A and B C = A nand B
f f f t
f t f t
t f f t
t t t f

Table 2.12: Composing and and not yields the nand operator.

their own. For example, consider composing the and and not operators:

C = not (A and B)

We can evaluate C for all possible input values of A and B, yielding the truth table shown
in Table 2.12.

We can also decompose known operators into compositions of other (usually “simpler”)
operators. Consider two of the binary operators from Table 2.10: nor and xor can both
be expressed in terms of and, or, and not:

C = not (A or B) = A nor B

C = (A or B) and (not (A and B)) = A xor B

We will later see, in Section 2.6.3, that and, or, and not are sufficient to compose any
logic function. For now, it is sufficient to note that any combination of input and output
values define such a logic function that can be expressed using some composition of operators.

2.2.4 Proper notation

So far, we have written out the use of Boolean operators in a kind of longhand, writing and,
not, etc. explicitly in our expressions. However, we will heretofore use a more compact
notation—one that resembles typical algebraic notation. Specifically:

• Negation: A bar over any variable or expression is the negation of that expression.
That is:

C = not(A)⇒ C = Ā

• Conjunction: Rather than writing the operator and to conjoin two expressions, they
need only to be written next to one another, much like algebraic multiplication:

C = A and B ⇒ C = AB

• Inclusive disjunction: The inclusive or operator is written using the plus sign, much
like algebraic addition:

C = A or B ⇒ C = A+B

13

0 0 1 1
+ 0 + 1 + 0 + 1
0 0 0 1 0 1 1 0

Table 2.13: The four possible summations of two 1-bit values.

x
+ y
z1 z0

Table 2.14: Generalizing the addition of two 1-bit values, using variables for each partici-
pating bit value.

• Exclusive disjunction: The exclusive xor operator has no “normal” algebraic ana-
log, and is written as a modified form of addition:

C = A xor B ⇒ C = A⊕B

This notation can be composed just as the operators themselves are, thus sufficing to
express other operators:

• nand: C = A nand B ⇒ C = AB

• nor: C = A nor B ⇒ C = A+B

2.3 Binary addition meets propositional logic

Now we can make good on putting propositional logic to use. More specifically, we can recast
the arithmetic addition of binary numbers as logic expressions. For simplicity, let us begin
with the addition of two 1-bit integers. There are only four possible combinations of two
1-bit values for addition, shown in Table 2.13.

We can generalize these additions by naming the 1-bit inputs x and y, and the 2-bit output
value z. The relationships between these variable is shown in Table 2.14.

Let us recast the addition of x and y as a problem of propositional logic. Consider a
binary value of 0 as thought it were a Boolean value f; likewise, the binary value 1 can be
substituted for the Boolean t. thus, we can map the above listing of 1-bit addition values
onto the truth table shown in Table 2.15. Examining the two output columns for z in this
table, we see that each can be expressed as simple logic expressions:

z1 = xy

z0 = x⊕ y

Thus, this simple arithmetic calculation can be recase as a pair of propositional logic
functions. For any pair of 1-bit numbers, the application of the and and xor logic operators
will produce the arithmetic sum.

14

x y z1 z0

f f f f
f t f t
t f f t
t t t f

Table 2.15: The summation of two 1-bit values (x and y), producing a 2-bit result (z), cast
as a truth table.

Addition of 1-bit numbers is so simple that its illustrative capacity as an example is limited.
Let us consider the addition of 4-bit integers, which will provide a model for the addition
of any two n-bit integers for any choice of n > 1. With two 4-bit values, it is impractical
to enumerate all of the possible input combinations. However, we can use the model from
Section 2.1.2, where the input values x and y are symbolically decomposed into their bits:
x = (x3, x2, x1, x0); y = (y3, y2, y1, y0). Moreover, the addition produces both a set of result
bits r = (r3, r2, r1, r0) and a set of “carry” bits c = (c4, c3, c2, c1). Specifically, recall the
form, following standard pencil-and-paper addition of decimal integers shown in Table 2.4.

To cast this arithmetic problem instead as a series of propositional logic expressions, we
must find a logical relationship between each of the bits of r and c in terms of the bits of x
and y. Note that we can begin with the least significant input bits—x0 and y0—since adding
those is merely adding two 1-bit values, which we have already examined. Therefore:

r0 = x0 ⊕ y0

c1 = x0y0

The remaining, more significant positions are slightly more complex. However, Table 2.6,
which relates the input bits ci, xi, and yi to the output bits ri and ci+1 for position i, is
exactly the correct truth table for this task, where this truth table substitutes the binary
value 0 for the Boolean value f, and the binary value 1 for the Boolean value t. From that
table, we can derive the following formulae for the output bits of each column.1

ri = c̄ix̄iyi + c̄ixiȳi + cix̄iȳi + cixiyi

ci+1 = c̄ixiyi + cix̄iyi + cixiȳi + cixiyi

Thus, the addition of our input bits can produce the carry and result bits by applying
these logic functions. One needs only to carry out the evaluation of the propositional logic
operators; yet the larger result is an arithmetic one.

1If the source of these formulae is a mystery, see Section 2.6.3, which presents a standardized approach
for converting truth tables to logic functions.

15

z

drain

x

y

Figure 2.1: Schematic of an and gate constructed from a drum and connected pipes through
which water flows (or not).

2.4 Gates and Propositional Logic: Where the rubber

meets the road

So far, we have seen how to decompose at least one simple arithmetic calculation into a
collection of propositional logic operations. What has been unclear is why we are interested
in this decomposition. We answer that question here: gates.

Our interest in propositional logic stems from our ability to make physical devices that
carry out logic operations. These devices serve as the fundamental building blocks for all
computation, because all computational expression can ultimately be decomposed into logic
functions. Our goal here is to establish how these devices can be used to carry out any logic
operation.

2.4.1 Water gates

AND gate: For a first attempt at creating devices that can carry out logic operations,
we will employs devices that control the flow of water. how the water flows determines the
result of some logic operation. As an example, let us begin with a water-flow device that
carries out the and operation, specifically: z = xy.

Figure 2.1 shows a drum to which there are four pipes of equal gauge attached. Each
input and output is associated with one pipe each. For the inputs x and y, we can represent
a value of 1 (or t) by pumping water in through their respective pipes. Likewise, we can
represent 0 (or f) by not pumping any water in through either or both of these pipes. We
also interpret a flow out through the z pipe as a 1, and no flow as a 0. The flow of water (or
lack of it) trhough the drain pipe is not relevant, so we ignore it.

16

How does this drum carry out the logical and operation? How does it behave as an “and
gate”? Let us consider all four possible input combinations:

• Case 002—x = 0 and y = 0: No flow enters the drum through the x and y pipes.
Therefore, no flow exists the z pipe, implying that z = 0, which is the correct result
for and.

• Case 012—x = 0 and y = 1: No flow enters through the x pipe, but it does enter
through the y pipe. The water that flows in through y then flows out of the drum
through the drain pipe. Since the drain allows the water to exit the drum as fast as it
enters, the water level never rises to the z pipe, and thus no water flows out through
the z pipe. Thus, the device emits z = 0, which is correct.

• Case 102—x = 1 and y = 0: This case is analagous to the previous case 012.

• Case 112—x = 1 and y = 1: Flow enters the drum through both the x and y pipes.
Because the water exits the drain pipe at half the rate of the total incoming flow,
the water level will rise in the drum. After some time—a period knows as the gate
delay—water will begin flowing out of the z pipe. This outflow represents the correct
result for this case of z = 1.

Because of the gate delay for case 112, one must wait for at least that period of time after
presenting new input flows (or lack of them) before the output of z is guaranteed to be
correct. In any previous moment, the gate may still be altering the water level, and the
output may not yet be stable. For different gate designs, the gate delay may have slightly
different causes, and the duration of the delay will vary.

OR gate: Let us now consider how to construct an or gate from this type of water drum.
Constructing such a gate requires only that we swap the labels of the drain and z pipes from
the water-drum and gate. To see that this simple inversion works, consider the four possible
input cases:

• Case 002—x = 0 and y = 0: Input flow from neither the x nor y pipes implies no
output flow through the z pipe, implying correctly that z = 0.

• Cases 012 and 102—x = 0 and y = 1; or x = 1 and y = 0: The flow into the drum from
one of the two inputs flows out of the z input, yielding the correct result of z = 1.

• Case 112—x = 1 and y = 1: The flow into the drum from both x and y pipes will
cause both a flow out of the z pipe and a raising of the water level in the drum. That
excess water will eventually flow harmlessly out of the drain pipe. The flow out of the
z pipe implies the correct result of z = 1.

Notice that for this or gate, the gate delay is much shorter. When new input flow is
presented, one must wait only the time required for the water to fall down the drum and
begin exiting the z pipe. Thus, thr output of this or gate is guaranteed to be correct more
quickly than the and gate.

17

NOT gate: We are missing one critical capability—a gate that performs logical negation.
We need a device that carries out z = x̄. Notice that, unlike the other two gates that we
have devised, this one must produce an output flow when there is no input flow. therefore,
it must have a “power source”—an input flow that is not one the logical arguments to the
operator. We leave it as an exercise to you, the reader, to device a water-drum not gate
that. . .

• . . . when x = 0, the flow from the power source is directed to flow out of the z pipe,
and . . .

• . . . when x = 1, the flow from both x and the power source is directed to flow out of
drain pipes.

2.4.2 Electronic silicon gates

The water-drum gates presented in Section 2.4.1 are meant to show the simple construction of
devices capable of performing propositional logic operations. Of course, these water drums
would operate correctly, but slowly. Real computing devices use semiconducting2 silicon
transistors instead of drums, and flowing electricity instead of flowing water. Typically, a
flow of +5 volts represents a binary value of 1, while 0 volts represents a value of 0. Other
than these changes in substrate, the functions of the silicon gates and the water gates are
quite similar, but the former are much faster.

The construction of the silicon gates is beyond the scope of this book. [SFHK: Add
references to descriptions of transistors, silicon gates, and lithography.]

2.4.3 Representing logic functions with gates

No matter the specific devices used, we will heretofore represent these logic gates as depicted
in Figure 2.2. Critically, these gates can be composed analagously to the manner in which
logic operators are algebraically composed. For example, Figure 2.3 shows an example of
the composed logic function z = w⊕ xy. The order in which a Boolean algebraic expression
is evaluated is mirrored by the order in which input values flow into and through the gates,
and ultimately to the circuit’s output. In this example, one must first evaluate xy; only then
can the result of that evaluation be combined with w using the xor operator to produce
the result z. Analagously, the inputs lines x and y must have their values flow through the
nand gate first, then having the output of that gate flow as an input, along with the w line,
into the xor gate.

In closing this section, let us remember the high-level impact of composing gates in this
manner: we can contruct a device that automatically computes the result of any propositional
logic function for a set of given input values. Thus, any problem that can be expressed as a
logic function can also be computed automatically by some arrangement of gates.

2That is, electrically conductive under some circumstances, but non-conductive under others.

18

z = x + y

z
x

yy
z

z = xy

x

y
z

z = xy

x

z = x + y

z
x

y

z
x

y

z = x + y

x z

z = x

Figure 2.2: Substrate-neutral, graphical representations of gates that implement various logic
operations.

z = w + xy

y

x

w

xy

Figure 2.3: A gate-based circuit that implements the function z = w ⊕ xy.

2.5 Foreshadowing: Basic adder circuits

In Section 2.3, we saw how to express arithmetic addition of both 1-bit and 4-bit whole num-
bers as collections of logic functions. Here, we show hot o translate those logic functions into
gate-based circuits, thus designing devices capable of carrying out these addition operations
automatically.

2.5.1 A 1-bit half-adder

Recall that, in adding two 1-bit values—x and y—that two propositional logic functions
are required to produce each of the values from the 2-bit result. Specifically, the result
z = (z1, z0) is determined by the functions:

z0 = x⊕ y

z1 = xy

Figure 2.4 a circuit to carry out this addition task, we can use the same two inputs to
feed into gates that implement both logic functions and produce both output bits. Notice
that any line that carries a flow can be split so that it can serve as an input to more than
one gate. For example, x is divided at the dot labeled x-split, and then procides the same
input value to both gates simultaneously. This dot is used to show the coinnection all line
that meet at that point. Lines that cross without such a dot are not connected.

This combinational circuit implements 1-bit arithmetic addition. Present any two values
as x and y, pause for the gate delay of both gates, and observe z1 and z0 to obtain the
answer.

19

Figure 2.4: A half-adder that adds two 1-bit values.

2.5.2 A 4-bit ripple-carry adder

Adding 1-bit numbers provides a useful initial example, but it does not demonstrate well
the more complex structures that can be devised to compute more complex problems. To
provide a richer example, we examine the logic and circuitry for a 4-bit adder.

Recall that the addition of 4-bit values can be represented in the form shown in Figure 2.7.
In that formulation, x = (x3, x2, x1, x0) and y = (y3, y2, y1, y0) are input values, while z =
(z3, z2, z1, z0) and c = (c4, c3, c2, c1) are 4-bit output values produced by the process of adding
x and y. More specifically, recall that adding one set of bits of the same significance is defined
by the formulas:

zi = c̄ix̄iyi + c̄ixiȳi + cix̄iȳi + cixiyi

ci+1 = c̄ixiyi + cix̄iyi + cixiȳi + cixiyi

Figure 2.5 shows these two logic functions as combinational circuits. Collectively, we call
these circuits a full-adder, since, unlike the half-adder, it incorporates the carry-in value.
Furthermore, it produces the output for a single column’s result (zi) as well as the input for
the next column (ci+1). Now that we know how this full-adder is structured, we can draw
it as a box with its three 1-bit inputs and its two 1-bit outputs, with no need to draw each
individual gate.

Clearly, a full-adder is not, by itself, capable of adding two 4-bit values. However, by
stringing together a sequence of four full-adders, we can construct a 4-bit adder. The key
observation is that the carry-out of one full-adder may be connected to the carry-in of the
next, thus properly carrying those value from a less significant column to the next more
significant one.

20

i+1

i xi yici ci xi yi

zi

c

c

Figure 2.5: A full-adder that adds three 1-bit values.

Figure 2.6 shows how four full-adders can be arranged to add two 4-bit values. First, notice
that c0 seems to be a superfluous input. By setting c0 = 0, we ensure that this extraneous
input has no effect on the result. In the diagram, the triangle-like sequence of lines that
serve as a source for c0 is the symbol for connecting a line directly to ground—that is, this
line will carry 0 volts to represent the input value of 0.

21

Figure 2.6: A 4-bit ripple-carry adder constructed from a chain of full-adders.

Second, notice that c1, c2, and c3 are both input and output values. This dual role reflects
directly the role of carry digits in pencil-and-paper addition—the “excess” of one column in
carried into the next.

Third, recall the issue of gate delay (define in Section 2.4.1). If we present all of the inputs
at time t0, then we cannot trust the outputs of the least significant full-adder (z0 and c1)
until the accumulated gate delay has passed. If we peek inside out full-adder circuit, we see
each of the outputs is the result of waiting for a group of not gates, then a group of and
gates, and finally a multi-input or gate (which may be implements as a collection of 2-input
or gates). Critically, all of the not gates do their work at the same time—concurrently.
The same is true of the and gates, and of the two or gates. Thus, if a not gate’s delay is
dNOT , an or gate has delay of dOR, and an and gate has delay dAND, then the total delay
for both outputs of a full-adder is dFA = dNOT + dAND + dOR. Thus, at time t0 + dFA, we
can trust that z0 and c1 are correct and will not change so long as the inputs x and y are
unchanged.

Now for the catch: z1 and c2 cannot be trusted until the second full-adder has had sufficient

22

time to process its inputs. However, although x1 and y1 may have been presented to their
full-adder at time t0, ci will not be guanateed to be a correct input until t0 + dFA. Thus, z1

and c2 will not be reliable ouput values until t0 + dFA + dFA = t0 + 2dFA.
This pattern continues: z2 and c3 are not reliable until time t0 + 3dFA; z3 and c4 become

reliable at time t0 + 4dFA. Thus, the delay for the complete 4-bit adder is 4dFA. This delay
is dictated by the critical path—a path through the circuit from some input to some output
where the sum of hte gate delays along that path is maximal for that circuit. Here, the
critical path from, say, x0 to z3 flows through a sequence of gates whose cumulative delay is
4dFA. This critical path is not unique, as others (e.g., starting at y0 and ending at c4) have
identical gate delay sums.

We have created a circuit that, given time 4dFA to do its work, will automatically add any
two 4-bit whole numbers. This device is made of nothing but the simple gates that perform
simple propositional logic operations, yet the device itself performs a task that is not itself
a logic operation.

2.6 More propositional logic

We have now seen simple demonstrations of using logic operators (and, or, not) and
devices that carry out those operations (gates) to automatically perform a task—integer
addition—that is not itself propositional logic. Now that we have seen how logic can be used
to perform computation, we must become somewhat more proficient in this type of logic.

2.6.1 Boolean algebra

When working with Boolean expressions, we can apply algebraic rules that are familiar to
us. We can also apply a few rules that are valid for Boolean algebra, but not for traditional
algebra. Specifically:

• Identity:

– or: x+ 0 = x

– and: x1 = x

• Commutativity:

– or: x+ y = y + x

– and: xy = yx

• Associativity:

– and: x+ (y + z) = (x+ y) + z

– or: x(yz) = (xy)z

• Distribution: x(y + z) = xy + xz

• Zero: x0 = 0

23

• One: x+ 1 = 1

Finally, there are a pair of special rules known as DeMorgan’s Laws :

xy = x̄+ ȳ

x+ y = x̄ȳ

With these rules, we can manipulate any Boolean expression. In particular, we can use
these properties to establish the equivalence of expressions; we can also use the properties to
simplify expressions. For example, consider the following transformation from one expression
that performs the xor operation to another:

x⊕ y

= (x+ y)(xy)

= (x+ y)(x̄+ ȳ)

= x̄x+ xȳ + x̄y + ȳy

= 0 + xȳ + x̄y + 0

= xȳ + x̄y

2.6.2 The generality of truth tables

No matter what combination of operators used to compose a logic function, a truth table
can always be constructed that represents that function. For example, consider the following
arbitrary, 3-input function:

z = (w ⊕ xy)(w̄x̄)

This function has no intuitive or obvious “meaning.” It is merely an arbitrarily constructed
function. We can construct its truth table by carrying out the function on all possible inputs,
as shown in Table 2.16.

This type of conversion from a logic function to a truth table is straightforward. However,
it is less clear how to convert from an arbitrary truth table to a logic function. It is important
to note that any different logic functions may produce the same truth table—that is, there
are functions that are semantically equal but syntactically different. For example, consider
these three simple functions:

zA = (x+ y)(xy)

zB = (x+ y)(x̄ȳ)

zC = x̄y + xȳ

24

w x y xy w̄x̄ w ⊕ xy z
0 0 0 1 1 1 0
0 0 1 1 1 1 0
0 1 0 1 0 1 1
0 1 1 0 0 0 1
1 0 0 1 0 0 1
1 0 1 1 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 1 1

Table 2.16: Translating an arbitrarily chosen, 3-input logic function into a truth table by
evaluating the components of the function and adding them to the truth table, building
towards the final function.

Superficially, these are three different 2-input functions. However, they all implement
the xor operation, producing the same outputs for any given input.3 Thus, for a given
truth table, an arbitrary number of syntactically different functions will produce the correct
semantic result. How can one systematically convert any truth table into a corresponding
logic function?

2.6.3 Normal forms

Consider our previous, arbitrarily chosen, 3-input logic function and the corresponding truth
table shown in Table 2.16. We can use that truth table to produce a function of a specific
syntactic form by following a set of mechanistic steps. To do so, we begin by listing the
input values of w, x, and y that results in z = 1. Table 2.17 shows the six cases fitting
that description. Along with each such input combination, the table also shows how each
such set of input values can be translated into a conjunctive term—that is, expression of w,
x, and y such that the three are combined by the and operator. Moreover, for each such
term, if the variable in question for that case should be a 1, then the variable is written in
an unmodified, “positive” form; if the variable should be a 0, then it should be inverted by
the not operator before being conjoined with the other variables. For example, in the case
where z = 1 when w = 0, x = 1, and y = 0, then the conjunctive term we seek is w̄xȳ.

Given these six conjunctive terms (in this example), we then disjoin them—that is, combine
them with the or operator. Theresult is a complete expression of z:

z = w̄xȳ + w̄xy + wx̄ȳ + wx̄y + wxȳ + wxy

For any assignment of values to the input variables that should yield z = 1, exactly one of
the conjoined terms will evaluate to 1. Since all of those conjoined terms are then disjoined
to form the whole expression, having any one conjoined term evaluate to 1 is sufficient for
the entire expression also to evaluate to 1. For example, consider the evaluation of w = 1,

3Try constructing a truth table that evaluates all three functions to convince yourself of their semantic
equivalence.

25

w x y conjunctive term
0 1 0 w̄xȳ
0 1 1 w̄xy
1 0 0 wx̄ȳ
1 0 1 wx̄y
1 1 0 wxȳ
1 1 1 wxy

Table 2.17: For an example 3-input function, the six combinations of input values that cause
a result of z = 1 and the corresponding conjunctive terms.

w̄xȳ+ = 1̄10̄+ = 011+ = 0+
w̄xy+ 1̄10+ 010+ 0+
wx̄ȳ+ 11̄0̄+ 101+ 0+
wx̄y+ 11̄0+ 100+ 0+
wxȳ+ 110̄+ 111+ 1+
wxy 110 110 0

= 1

Table 2.18: Evaluating the example expression where w = 1, x = 1, and y = 0, where exactly
one conjunctive term evaluates to 1, causing the whole disjoined set of terms to evaluate to
1 as well.

x = 1, and y = 0 shown in Table 2.18. Each row in this table shows one conjunctive term
from the disjoined six, and then shows how each is evaluated to each a final result.

As you might expect, for any assignment of values to w, x, and y where the result is z = 0,
none of the conjunctive terms will evaluate to 1. Thus, the disjoining of a collection of 0
results is always 0, yielding the correct answer for that case.

This form of expression—a collection of conjoined terms, with each such term combining
each input or its inversion, with all such terms disjoined—is the disjunctive normal form
(DNF), or the or-of-ands form. As we have just seen, any truth table can be converted into
a DNF expression. A corrolary of this observation is that three logic operations—and, or,
and not—are sufficient for composing any logic function. Thus, the gates that perform this
three operations are also sufficient to implement a device that carries out any logic function.

Note that there is also a conjunctive normal form (CNF): a set of disjunctive terms, each
of which contains all of the input variables (or their inversion), all conjoined to form an
expression. For example, the following function is expressed in CNF:

z = (w̄ + x+ ȳ)(w + x̄+ ȳ)(w + x̄+ y)

Because this form is not as intuitively derived from a truth table as DNF expressions,
we will not use it. However, any DNF expression can, through algebraic manipulation, be
transformed into a CNF expression and vice versa.

26

x xx = z
0 1
1 0

Table 2.19: The truth table for z = xx = x̄, showing nand configured to perform the not
operation.

Figure 2.7: A combinational circuit using only nand gates to carry out the not operation.

2.6.4 Minimal operators

The observation that and/or/not are sufficient to express any logic function poses the
following question: Do we need all three of those operators? Can we compose any logic
function from just two, or perhaps even one logic operator? Note that to prove that fewer
operators are sufficient, we need only show how to compose the one or two operators such
that they perform and, or, and not, whose sufficiency we have already demonstrated.

Let us consider the nand operator, defined by the truth table shown in Table 2.12, and
defined by the function z = xy. Then let us see how this one operator can be composed with
itself to carry out not, and, and or.

not : Although nand is a binary operator (that is, it operates on two 1-bit inputs), not
is a unary operator (it operators on one 1-bit input). Thus, consider using the same variable
for both of a nand operator’s inputs:

z = x̄ = xx

That is, x is nand’ed with itself. Since x is the only input, we can use the simplified truth
table shown in Table 2.19 to prove that x̄ = xx, and thus that nand can be used to invert
a value. Figure 2.7 shows the combinational circuit, using only a nand-gate, that performs
the not operation.

and : Now that we have established that nand can perform the not operation, we can
use both operators in determining how to perform and using only nand. The following
expressions, as well as the truth table shown in Table 2.20, show the equivalence:

z = xy = xy = xyxy

27

x y xy z = xy = xy
0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 2.20: The truth table for z = xy = xy, showing nand configured to perform the and
operation.

Figure 2.8: A combinational circuit using only nand gates to carry out the and operation.

x y x̄ȳ x̄ȳ = x+ y
0 0 1 0
0 1 0 1
1 0 0 1
1 1 0 1

Table 2.21: The truth table for z = x + y = x̄ȳ, showing nand configured to perform the
or operation.

Again, we can prove this equivalence with the truth table in Table 2.20; we can also see,
in Figure 2.8 the combinational circuit that implements and using only nand gates.

or : Finally, we have the ability, using only nand gates, to perform nand, and, and
not. With these three, we seek to perform the or operation. The formula below shows the
equivalence between an arrangement of nand operations and the or operation. Table 2.21
and Figure 2.9 show the truth table and combinational circuit, respectively, that reflect this
formula.

z = x+ y = x+ y = x̄ȳ

28

Figure 2.9: A combinational circuit using only nand gates to carry out the or operation.

The big picture: These three simple circuits, using only nand gates, are sufficient build-
ing blocks to implement any logic function. Moreover, we will see that they are therefore
sufficient to implement any computation. nor is likewise sufficient; we leave it to the reader
to develop and, or, and not expressions and circuits based solely on the nor operator.

2.7 Circuit simplification

We can see from the 4-bit adder example that circuit structures for any non-trivial task are
complex. For those constructing circuits by hand, each additional gate adds not only labor
but also an opportunity for a miswiring error. For mass-produced circuits, each additional
gate occupies valuable chip space, consumes more energy, and produces more waste heat.

Therefore, we have many reasons to simplify our circuits. Doing so requires simplifying
the corresponding logic—that is, for a given truth table, finding the correspoinding logic
function that uses the fewest logic operators. Since each oiperator is implemented by a gate,
these minimal functions yield the smallest circuits.

2.7.1 Karnaugh maps for 2-input functions

Normal forms provide simple, mechanistic approaches top translating a truth table into a
logic function. However, normal form functions are rarely minimal. Here, we examine an
alternative method for t ranslating truth tables into logic functions—a method that, by
finding certain patterns, allows us to create a minimal logic function.

Consider the nand function, whose 2-input truth table is shown in Table 2.12. We can
easily convert this truth table into a DNF logic function4:

z = x̄ȳ + x̄y + xȳ

4Although you can likely imagine a simpler function that this DNF form, note that your ability to do
so stems from the inherent smallness and simplicity of any 2-input function. Suspend your intuitions about
simpler functions for the purpose of this example; later examples will be more difficult, where you not
immediately identify a simpler form.

29

Figure 2.10: The layout of a Karnaugh map for the 2-input nand function.

Figure 2.11: A 2-input Karnaugh map, with rectangles encapsulating simplified conjunctive
terms.

In order to devise a syntactically shorter function, we begin by writing our truth table
in a special form, known as a Karnaugh map, as shown in Figure 2.10. For this map, the
vertical axis is labeled with the possible values of x (x̄ ⇔ x = 0, x ⇔ x = 1), while the
horizontal axis is labeled analagously with the possible y values. Then, each position on the
map corresponds to some specific choice of values for the two input variables. Moreover, that
choice of values for the input variables corresponds to an output value for z. That z value
should be placed in the aofrementioned location in the map, thus showing the function’s
result for those inpuit values associated with that position.

Next, one must find rectangles of 1’s. A rectangle that encoloses 1’s with no 0’s included
identifies a simplified conjunctive term that will be part of a completed expression for the en-
tire function, where the conjunctive term has factored out superfluous variables. Figure 2.11
shows the rectangles for a Karnaugh map of the nand function. These rectangles can be
horizontal or vertical, and they may overlap. Using this example, we can examine what each
of these rectangles represent:

• α: This rectangle encapsulates two 1’s, and thus two input patterns that cause the
function to evaluate to 1, specifically x = 0, y = 0 and x = 0, y = 1. Notice that for
both of these cases, x = 0. Graphically, we see that commonality in that α spans ȳ
and y columns, but stays within x̄ row.

• β: Similarly, the two 1’s encapsulated by this rectangle are produced by the pair of
input patterns x = 0, y = 0 and x = 1, y = 0. This rectangle spands the rows x̄ and x,
but stays within the column ȳ, thus graphically representing that y = 0.

Each rectangle represents a single conjunctive term that is simplified—that is, unlike a
conjunctive term in DNF, it may not contain every input variable. Specifically, each rectangle
represents a term composed of the common input variables (or their inversions), with those
input variables that are not in common excluded. For example, α represents the term x̄. We
can obtain this same simplification by applying Boolean algebraic rules to a DNF expression
of the input patterns to which α corresponds. That is:

α = x̄ȳ + x̄y

If we factor out x̄, apply the disjunctive ones property, and then the conjunctive identity
property, we get:

α = x̄(ȳ + y) = x̄1 = x̄

30

Thus, α here represents the term x̄, which is a substantial simplification of x̄ȳ + x̄y.
Similarly, β can be shown to represent ȳ as follows:

β = x̄ȳ + xȳ = ȳ(x̄+ x) = ȳ1 = ȳ

The terms represented by the rectangles can then be disjoined, thus forming the complete,
simplified expression:

z = x̄+ ȳ

Notice that the two rectangles overlapped at x̄ȳ. Such overlaps are valid. For the input
pattern corresponding to an overlapping region, the consequence is that more than one of
the conjunctive terms in the final expression will evaluate to 1. Here, when x = 0, y = 0,
then x̄ = ȳ = 1. But since those terms are disjoined in z, whether one or both evaluates to
1 is irrelevant—the end result is that z = 1.

31

