Fundamental Systems Structure

Core concepts in CPU architecture, The memory hierarchy, COMPILERS, AND OPERATING SYSTEMS

Scott F. H. Kaplan
sfkaplan@cs.amherst.edu

Contents

1 Introduction 3
1.1 Why this book? 3
1.2 Topic progression 4
1.3 Supporting software 5
1.4 How to read this book 5
2 Digital Logic 6
2.1 A motivating example: Adding two integers 6
2.1.1 Binary numbers 6
2.1.2 Addition, take I 8
2.2 Propositional Logic I 10
2.2.1 An example 10
2.2.2 Generalizing operators 12
2.2.3 Composing propositional functions 12
2.2.4 Proper notation 13
2.3 Binary addition meets propositional logic 14
2.4 Gates and Propositional Logic: Where the rubber meets the road 16
2.4.1 Water gates 16
2.4.2 Electronic silicon gates 18
2.4.3 Representing logic functions with gates 18
2.5 Foreshadowing: Basic adder circuits 19
2.5.1 A 1-bit half-adder 19
2.5.2 A 4-bit ripple-carry adder 20
2.6 More propositional logic 23
2.6.1 Boolean algebra 23
2.6.2 The generality of truth tables 24
2.6.3 Normal forms 25
2.6.4 Minimal operators 27
2.7 Circuit simplification 29
2.7.1 Karnaugh maps for 2-input functions 29

Chapter 1

Introduction

Computing devices are pervasive. A great effort is required, in our society, to avoid their use for all sorts of activities. Some of those activities are obvious: sending email; browsing the web; using a word processor or spreadsheet; playing video games. However, computing devices are used in a much wider variety of devices: cars; airplanes; watches and clocks; mobile telephones; portable music players; televisions; cameras; bank ATM's. However, few people who use these devices understand how they work. That they are so useful to so many people, without those people understanding their structure or inner function, is a testament to their design, hiding their complex inner workings as they perform only seemingly simple tasks.

However, some people must understand how these systems are designed and structured. However, for many, the workings of a simple calculator are a mystery, let alone a full-fledged, modern computer system.

1.1 Why this book?

Computer systems comprise a large number of components or layers, and each of these is commonly presented separately from the others. Thus, gaining a fundamental understanding of how such a system could be constructed requires a number of texts and, perhaps, and number of academic courses. Additionally, each of these texts and courses tends to delve into one system component in detail, making it difficult to separate the essential and basic concepts and structures from various refinements and optimizations for that component.

This book, instead, provides a single, unified presentation of the fundamental structure of a complete computing system. It begins with the lowest level-digital logic-and proceeds to compose the capabilities at each level to develop the next. Ultimately, it presents the basic structure of a CPU and memory bus, the design of a compiler, and the structure of an operating system kernel with its basic components. As a whole, this book presents one simple way of developing a complete computing system, bottom to top. It addresses the fundamental concepts required for this design, stripping away the confusing details that come with the development of a full-featured, optimized computing system.

By reading this entire book, or by taking courses that follow the structure of this book, you will ultimately see how a complete computing system works. You will not know the details
of any one real-world system, but you will understand the core concepts that will allow you to grasp those details of any such system. Moreover, you will be able to delve into each component or layer and understand not only the deeper concepts, but also how that layer interacts with others. It is this interaction between layers that is critical to system design and use, but is often lost in the one-component-at-a-time approach taken by most texts and courses.

1.2 Topic progression

This text takes a bottom-up approach. That is, it will begin with the most simple tools and concepts, and then build them up, one layer at a time, toward more complex and capable tools and concepts. Specifically, we should end with a complete (if simplified) computing system for which we can write complex programs and run many of them at once.

This approach is in contrast to the (predictably named) top-down approach. For that approach, the text would have begun with a complete, programmable computing system, and then explained its workings by incrementally delving down to the more simple and detailed layers. Each of these two approach has advantages and disadvantages. Examination of them will reveal why this book takes the bottom-up approach.

The top-down approach has the advantage that the motivation for each layer, as the presentation progresses, is clear. If you begin with the premise that you want a computer system for which you can write and run multiple, complex programs, then it is clear why one would begin the presentation with such a system. In order to understand how that system works, you then begin to delve down into the layers below it, carrying with you the clear motivation for understanding those layers.
The bottom-up approach lacks this ease of motivation. For example, when beginning with something so simple as digital logic, it is not immediately and intuitively clear to the reader why this topic is relevant. It is therefore the responsibility of the writer to explicitly provide the motivation for understanding this layer of the system, while deferring any understanding of how this topic relates to the entire system.

In spite of this problem with the bottom-up approach, is does have one wickedly important advantage: there need not be any mysteries. When beginning with the most simple layer, everything about that layer - its concepts, implementation, and applications - can all be explicitly explained. Then, with the advantage of fully understanding that lowest layer, the presentation can progress to the next layer, drawing upon the fully demystified layer below. In this way, when the presentation may reach its top level-a complete computational system - then every aspect of the system is explained and understood. No component is a mystery, and the interaction and function of all components can be seen.
In contrast, the top-down approach suffers from seemingly mysterious components, layers, and concepts until the very end is reached. When you begin with the complete system, none of its workings are understood. As you delve into the lower layers, you learn how each layer works, but you do so by making assumptions about the yet uninvestigated layers below, whose workings are a mystery. As you uncover the mystery of each layer, you must remember how it relates to the layers above it, and, ex post facto, piece together their relationship.

The purpose of this text and courses that follow it is to demystify the workings of com-
putational systems. Therefore, it is more important that, during the journey of discovery, nothing is left as a mystery. At every step, you should see how the current topic is supported by all of the levels below it, with full knowledge of the concepts and the implementation of those levels. We therefore will follow the bottom-up approach, explicitly motivating each level, and building upon tools and concepts that have already been thoroughly developed.

1.3 Supporting software

[SFHK: Add this when the simulator/assembler/COMPILER are done.]

1.4 How to read this book

[SFHK: WRITE ME]

Chapter 2

Digital Logic

You have likely heard that computers work in "binary" -all 0's and 1's. But what does that mean? How can a collection of 0's and 1's represent numbers, or text, or pictures, or movies? How cna a program be made of nothing but 0's and 1's? That is, how can a group of 0 's and 1 's tell a machine what to do and when to do it?

We will answer some of these questions directly. For example, representing everyday numbers, such as 3,127 , is merely a matter of learning base- 2 numeric representation, which is addressed in Section 2.1.1. However, more complex computing activities, such as using YouTube, are much more difficyult to grasp at the level of 0's and 1's. Doing so is akin to trying to understand a recipie for pumpkin pie by examining the interactions of the electrons, protons, and neutrons in a cookbook.

Although all modern computing is ultimately the manipulation of these 0 's and 1 's, computers cannot really be understood only at that level. Computer systems are better understood as a collection of layers, where the manipulation of binary numbers are at the bottom layer, and complex activities like Google Earth are at or near the top.

This chapter addresses that lowest level upon which all computing systems are built. It will build the foundation for representing and manipulating the 0's and 1's. Directly upon that foundation, we will be able to build circuits that perform basic arithmetic functions; later, we will use other, similar circuits that act as memory to store 0 and 1 values-data-for later.

2.1 A motivating example: Adding two integers

Of all the complex calculations and operations that a computing device can perform, among the most simple and intuitively understandable is integer addition. specifically, let us consider the addition of two whole numbers - non-negative integers $(0,1,2, \ldots)$. How can we make a machine that will add any two such numbers (e.g., $45,127+6,056$)?

2.1.1 Binary numbers

Knowing that we will later use devices that can manipulate 0's and 1's, we will begin by translating our problem into that form. That is, we want to represent the two values to be

decimal	binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111
16	10000
17	10001
18	10010
19	10011
20	10100

Table 2.1: The integers 0 to 20 in both decimal and binary.
added (the inputs) as well as their resulting sum (the outputs), using only the digits 0 and 1.

Typically, people represent numbers using the set of digits from 0 to 9 , also known as base 10 or decimal notation. Here, we need to represent numbers in base 2 or binary notation. We will use the binary digits - bits, for short - 0 and 1.

When counting in decimal, we can imagine an odometer. When the 1's position contains the final digit, 9 , and we then want to advance to the next number, the 1's position "rolls over" to a 0 again while the adjacent 10's position advances to a 1 . More generally, each position advances from 0 to 9 , and then it will return to 0 as the next, more significant position advances by one digit.
For binary numbers, imagine an odometer for which each position cycles not though the digits from 0 to 9 , but only through the digits from 0 to 1 . If the digit at a position is a 1 , and we want to advance the counter to the next number, then that position "wraps around" to 0 and advances the digit at the next, more significant position. For example, Table 2.1 shows the whole numbers from 0 to 20 .

To further develop an intuition about binary notation, consider how to decompose the digits of a decimal number into digits of differing significance. For example, 6, 398 can be decomposed into 6 thousands, 3 hundreds, 9 tens, and 8 ones. We can represent this decomposition as a collection of multiplications and additions, as shown in Table 2.2. Of course, the sum of the decomposed values shown in the bottom row is the original number.

thousands	hundreds	tens	ones
6	3	9	8
\times	\times	\times	\times
10^{3}	10^{2}	10^{1}	10^{0}
॥	"	"	"।
6,000	300	90	8

Table 2.2: Decomposition of the decimal number 6, 398.

thirty-seconds	sixteens	eights	fours	twos	ones
1	0	1	1	0	1_{2}
\times	\times	\times	\times	\times	\times
2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
॥	"	11	"	"	"।
32	0	8	4	0	1_{10}

Table 2.3: Decomposition of the number $101101_{2}=45_{10}$.

Binary numbers are similar, but instead of there being positions for 1's, 10's, 100's, etc., there are positions for 1's, 2's, 4's, 8's, etc. Table 2.3 shows an example of decomposing a binary number. In this table, notice that, now that we are using two numerical notations, each value is tagged with a subscript of 2 or 10 to indicate whether the value is binary or decimal, respectively. Also notice that if you sum the decimal values into which the binary number is decomposed, you obtain the decimal reprensetation of the same number - that is, you will have converted the binary representation into a decimal one.

Much like each decimal number can be decomposed into a sum of power-of-10 units, binary numbers are decomposed into a sum of power-of- 2 values. More importantly, any whole number can be represented in either decimal and binary - the two are equivalent. We should also note the difference between a number and its representation. No matter the representation of a number-45 (decimal), 101101 (binary), XLV (roman numerals) - the underlying number that these symbols represent is the same.

2.1.2 Addition, take I

In order to determine what concepts and devices we need to perform addition, we must first see how binary addition is performed. Let us review the simple mechanics of decimal addition. The two values to be added must be aligned by positions of significance: the 1's must be aligned, as must the 10 's, 100 's, etc. As an example, consider the additon of two four-digit decimal numbers: $x=3,281_{10}$ and $y=4,753_{10}$. We decompose the variables that represent these values to ease presentation of the arithmetic steps. Specifically, $x=\left(x_{3}, x_{2}, x_{1}, x_{0}\right)$, where $x_{3}=3, x_{2}=2, x_{1}=8$, and $x_{0}=1$. Similarly, $y=\left(y_{3}, y_{2}, y_{1}, y_{0}\right)$, and for this specific example, $y_{3}=4, y_{2}=7, y_{1}=5$, and $y_{0}=3$. Thus, our addition operation begins with the configuration shown in Table 2.4. On the left, we see the configuration for the addition of the specific values from our example; on the right, we see the generalized operation only on variables.

3	2	8	1					
+	4	5	3	$+$	x_{3}	x_{2}	x_{1}	x_{0}
:---	:---	:---	:---					
y_{3}	y_{2}	y_{1}	y_{0}					

Table 2.4: Configuration of addition for both example values (on the left) and generalized variables (on the right).

	1	1	0	0_{10}		c_{3}	c_{2}	c_{1}	c_{0}
	3	2	8	1_{10}		x_{3}	x_{2}	x_{1}	x_{0}
+	4	7	5	3_{10}	+	y_{3}	y_{2}	y_{1}	y_{0}
0	8	0	3	4_{10}	c_{4}	r_{3}	r_{2}	c_{1}	c_{0}

Table 2.5: The result of carrying out the addition algorithm on a specific set of values (on the left) and generalized variables (on the right).

Having formatted the input values as needed, summing x and y follows this algorithm:

1. Let k be the number of digits in the inputs (or, if they are not of the same length, prepend 0 digits to the shorter one to make it them the same length).
2. Let $i=0$, where i indicates the position whose values to add.
3. Let $c_{0}=0$, which is the carry-in to the least significant column. Write that value above x_{0}.
4. Let $z_{i}=x_{i}+y_{i}+c_{i}$. This result, z_{i}, is a two-digit result that we decompose as $z_{i}=c_{i+1} r_{i}$.
5. Write r_{i} below x_{i} and y_{i}. Write c_{i+1} above x_{i+1} and y_{i+1}.
6. Increment i.
7. If $i<k$ then jump back to step 4 .
8. Move c_{k} to the left of r_{k-1}, completing the result.

When we apply this algorithm, the result appears as shown in Table 2.5.
This same algorithm can be used for adding binary numbers as well. The only difference is in how r_{i} and c_{i} are determined-that is, how three binary digits $\left(x_{i}, y_{i}\right.$, and $\left.c_{i}\right)$ are added.

For example, consider adding $x=1011_{2}$ and $y=0110_{2}$. In order to see how this addition progresses, we must consider the possible values that may occur in step 4. One advantage of binary is, given only two possible digits, one can often exhaustively list all of the possible inputs and outputs, known as a truth table. Here, we consider adding three one-bit values c_{i}, x_{i}, and $\left.y_{i}\right)$. Since each can only take the value 0 or 1 , we can construct Table 2.6. Each of the eight possible sums is shown, in decimal, as z, and then as the two-bit binary value $c_{i+1} r_{i}$.

We can then lay out the numbers or variable using the same configuration that we do for decimal values, and then carry out the addition, using the values in Table 2.6 to determine the results in step 4. We see how the binary addition is performed in Table 2.7.

c_{i}	x_{i}	y_{i}	z	c_{i+1}	r_{i}
0	0	0	0	0	0
0	0	1	1	0	1
0	1	0	1	0	1
0	1	1	2	1	0
1	0	0	1	0	1
1	0	1	2	1	0
1	1	0	2	1	0
1	1	1	3	1	1

Table 2.6: The truth table for adding three one-bit values.

$$
\begin{array}{lllll|lllll}
& 1 & 1 & 0 & 0_{2} & & c_{3} & c_{2} & c_{1} & c_{0} \\
& 1 & 0 & 1 & 1_{2} & & x_{3} & x_{2} & x_{1} & x_{0} \\
+ & 0 & 1 & 1 & 0_{2} & + & y_{3} & y_{2} & y_{1} & y_{0} \\
\hline 1 & 0 & 0 & 0 & 1_{2} & c_{4} & r_{3} & r_{2} & c_{1} & c_{0}
\end{array}
$$

Table 2.7: The result of carrying out the addition algorithm on a specific set of values (on the left) and generalized variables (on the right).

2.2 Propositional Logic I

We now know how to carry out a stepwise process - an algorithm - to add two binary numbers. However, we must develop a number of concepts in order to design a machine capable of automatically performing addition.

At the base of these concepts - indeed, at the bottom of all computational devices - is propositional logic. Specifically, it is the set of formal rules for handling everyday concepts like and, or, and not.

2.2.1 An example

As an example, consider the following statement:
Tomorrow, if it is not raining, and if the temperature is at least $80^{\circ} \mathrm{F}$, then we will go to the beach.

This statement defines two conditions that must be evaluated to determine whether a visit to the beach will occur. These two conditions are:

1. $A=$ not raining
2. $B=$ temperature $\geq 80^{\circ} \mathrm{F}$

We can further decompose condition 1 as:

- $A^{\prime}=$ raining

X	\bar{X}
F	T
T	F

Table 2.8: The truth table that defines the Not operator.

X	Y	X and Y
F	F	F
F	T	F
T	F	F
T	T	T

Table 2.9: The truth table that defines the And operator.

- $A=\operatorname{Not}\left(A^{\prime}\right)$

So, we can express whether the conditions for a beach trip are met as:

$$
C=A \text { AND } B
$$

A, B, and C are Boolean variables: they can take on one the values of true (т) or false (F). In this example, we must ultimately determine the value of C. To do that, we need to know both whether it is raining, and the temperature.

First, whether it is raining is itself a Boolean condition - either it is raining or it is not. Thus, we can assign the value T to A^{\prime} if it is raining, and F to A^{\prime} if it is not.

Having assigned one of those values to A^{\prime}, we can determine the value of A. To do so, we must define the logic operator NOT. It is a unary operator, which means that it takes a single Boolean variable as its input. We can define the relationship between the two possible input values that the single variable may be assigned and the possible output values of the operator with the truth table shown in Table 2.8. This table shows that the not operator simply inverts the input value: F becomes T ; T becomes F .

Second, the temperature is not a Boolean value; it is, instead, a real-numbered value. However, we rely on the comparison operator greater than or equal to (\geq), which takes two real-valued inputs and produces a Boolean output value. Thus, B can be assigned the result of comparing the temperature to $80^{\circ} \mathrm{F}$: either the temperature is at least $80^{\circ} \mathrm{F}(B=\mathrm{T})$, or it is not $(B=\mathrm{F})$.

Third, given the ability to determine the Boolean values of A and B, we must determine how the logic operator and functions to calculate C. Again, a truth table can be used to formally define the commonsense notion that $C=\mathrm{T}$ if and only if $A=B=\mathrm{T}$. Table 2.9 shows this truth table.

Ultimately, to evaluate C, one must apply the comparison operator to determine B. Moreover, the NOT operator should then be applied to determine A. Finally, the AND operator must be applied to A and B in order to obtain the final result.

X	Y	X OR Y	X XOR Y	X NOR Y
F	F	F	F	T
F	T	T	T	F
T	F	T	T	F
T	T	T	F	F

Table 2.10: The truth table that defines the inclusive or (OR), exclusive or (XOR), and neither nor (NOR) operators.

X_{3}	X_{2}	X_{1}	X_{0}	R
F	F	F	F	T
F	F	F	T	T
F	F	T	F	F
F	F	T	T	F
F	T	F	F	F
F	T	F	T	T
F	T	T	F	F
F	T	T	T	F
T	F	F	F	T
T	F	F	T	T
T	F	T	F	T
T	F	T	T	F
T	T	F	F	T
T	T	F	T	T
T	T	T	F	F
T	T	T	T	F

Table 2.11: The truth table for an arbitrary, 4-input, Boolean logic operator.

2.2.2 Generalizing operators

Moving away from this simple example, we can generalize this type of calculation on Boolean values by defining other binary (that is, two-input) operators (of which AND is one). Consider Table 2.10, which is a truth table for the inclusive or (OR), exclusive or (XOR), and neither nor (NOR) operators. Notice that although each of these binary operators can be given a name that is a commonsense English word, that need not be the case. A logic operator can accept any number of Boolean value inputs, and its output values may follow no commonsense pattern. Consider the quanternary logic operator in Table 2.11, for which no simple name could be given. This example shows that any combination of input of output values listed in a truth table can define a valid operator.

2.2.3 Composing propositional functions

As we saw in the example in Section 2.2.1, propositional statements can be composed by applying additional propositional logic operators to any existing propositional expression. These compositions create new logic operations that can be expressed as truth tables of

A	B	A AND B	$C=A$ NAND B
F	F	F	T
F	T	F	T
T	F	F	T
T	T	T	F

Table 2.12: Composing And and not yields the NAND operator.
their own. For example, consider composing the AND and NOT operators:

$$
C=\operatorname{NOT}(A \text { And } B)
$$

We can evaluate C for all possible input values of A and B, yielding the truth table shown in Table 2.12,

We can also decompose known operators into compositions of other (usually "simpler") operators. Consider two of the binary operators from Table 2.10. NOR and XOR can both be expressed in terms of AND, OR, and NOT:

$$
\begin{gathered}
C=\operatorname{NOT}(A \text { OR } B)=A \text { NOR } B \\
C=(A \text { or } B) \text { AND }(\operatorname{NOT}(A \text { and } B))=A \text { xOR } B
\end{gathered}
$$

We will later see, in Section 2.6.3, that And, OR, and not are sufficient to compose any logic function. For now, it is sufficient to note that any combination of input and output values define such a logic function that can be expressed using some composition of operators.

2.2.4 Proper notation

So far, we have written out the use of Boolean operators in a kind of longhand, writing AND, NOT, etc. explicitly in our expressions. However, we will heretofore use a more compact notation - one that resembles typical algebraic notation. Specifically:

- Negation: A bar over any variable or expression is the negation of that expression. That is:

$$
C=\operatorname{NOT}(A) \Rightarrow C=\bar{A}
$$

- Conjunction: Rather than writing the operator And to conjoin two expressions, they need only to be written next to one another, much like algebraic multiplication:

$$
C=A \text { AND } B \Rightarrow C=A B
$$

- Inclusive disjunction: The inclusive or operator is written using the plus sign, much like algebraic addition:

$$
C=A \text { or } B \Rightarrow C=A+B
$$

	0		0		1		1
+	0	+	1	+	0	+	1
0	0	0	1	0	1	1	0

Table 2.13: The four possible summations of two 1-bit values.

	x
$+\quad y$	
$z_{1} \quad z_{0}$	

Table 2.14: Generalizing the addition of two 1-bit values, using variables for each participating bit value.

- Exclusive disjunction: The exclusive XOR operator has no "normal" algebraic ana\log, and is written as a modified form of addition:

$$
C=A \text { xor } B \Rightarrow C=A \oplus B
$$

This notation can be composed just as the operators themselves are, thus sufficing to express other operators:

- NAND: $C=A$ NAND $B \Rightarrow C=\overline{A B}$
- NOR: $C=A$ NOR $B \Rightarrow C=\overline{A+B}$

2.3 Binary addition meets propositional logic

Now we can make good on putting propositional logic to use. More specifically, we can recast the arithmetic addition of binary numbers as logic expressions. For simplicity, let us begin with the addition of two 1-bit integers. There are only four possible combinations of two 1 -bit values for addition, shown in Table 2.13 .
We can generalize these additions by naming the 1 -bit inputs x and y, and the 2 -bit output value z. The relationships between these variable is shown in Table 2.14.

Let us recast the addition of x and y as a problem of propositional logic. Consider a binary value of 0 as thought it were a Boolean value F; likewise, the binary value 1 can be substituted for the Boolean T. thus, we can map the above listing of 1-bit addition values onto the truth table shown in Table 2.15. Examining the two output columns for z in this table, we see that each can be expressed as simple logic expressions:

$$
\begin{gathered}
z_{1}=x y \\
z_{0}=x \oplus y
\end{gathered}
$$

Thus, this simple arithmetic calculation can be recase as a pair of propositional logic functions. For any pair of 1-bit numbers, the application of the AND and XOR logic operators will produce the arithmetic sum.

x	y	z_{1}	z_{0}
F	F	F	F
F	T	F	T
T	F	F	T
T	T	T	F

Table 2.15: The summation of two 1-bit values (x and y), producing a 2-bit result (z), cast as a truth table.

Addition of 1-bit numbers is so simple that its illustrative capacity as an example is limited. Let us consider the addition of 4-bit integers, which will provide a model for the addition of any two n-bit integers for any choice of $n>1$. With two 4 -bit values, it is impractical to enumerate all of the possible input combinations. However, we can use the model from Section 2.1.2, where the input values x and y are symbolically decomposed into their bits: $x=\left(x_{3}, x_{2}, x_{1}, x_{0}\right) ; y=\left(y_{3}, y_{2}, y_{1}, y_{0}\right)$. Moreover, the addition produces both a set of result bits $r=\left(r_{3}, r_{2}, r_{1}, r_{0}\right)$ and a set of "carry" bits $c=\left(c_{4}, c_{3}, c_{2}, c_{1}\right)$. Specifically, recall the form, following standard pencil-and-paper addition of decimal integers shown in Table 2.4.

To cast this arithmetic problem instead as a series of propositional logic expressions, we must find a logical relationship between each of the bits of r and c in terms of the bits of x and y. Note that we can begin with the least significant input bits- x_{0} and y_{0}-since adding those is merely adding two 1 -bit values, which we have already examined. Therefore:

$$
\begin{gathered}
r_{0}=x_{0} \oplus y_{0} \\
c_{1}=x_{0} y_{0}
\end{gathered}
$$

The remaining, more significant positions are slightly more complex. However, Table 2.6, which relates the input bits c_{i}, x_{i}, and y_{i} to the output bits r_{i} and c_{i+1} for position i, is exactly the correct truth table for this task, where this truth table substitutes the binary value 0 for the Boolean value F, and the binary value 1 for the Boolean value T. From that table, we can derive the following formulae for the output bits of each column. ${ }^{1}$

$$
\begin{aligned}
r_{i} & =\bar{c}_{i} \bar{x}_{i} y_{i}+\bar{c}_{i} x_{i} \bar{y}_{i}+c_{i} \bar{x}_{i} \bar{y}_{i}+c_{i} x_{i} y_{i} \\
c_{i+1} & =\bar{c}_{i} x_{i} y_{i}+c_{i} \bar{x}_{i} y_{i}+c_{i} x_{i} \bar{y}_{i}+c_{i} x_{i} y_{i}
\end{aligned}
$$

Thus, the addition of our input bits can produce the carry and result bits by applying these logic functions. One needs only to carry out the evaluation of the propositional logic operators; yet the larger result is an arithmetic one.

[^0]

Figure 2.1: Schematic of an AnD gate constructed from a drum and connected pipes through which water flows (or not).

2.4 Gates and Propositional Logic: Where the rubber meets the road

So far, we have seen how to decompose at least one simple arithmetic calculation into a collection of propositional logic operations. What has been unclear is why we are interested in this decomposition. We answer that question here: gates.

Our interest in propositional logic stems from our ability to make physical devices that carry out logic operations. These devices serve as the fundamental building blocks for all computation, because all computational expression can ultimately be decomposed into logic functions. Our goal here is to establish how these devices can be used to carry out any logic operation.

2.4.1 Water gates

AND gate: For a first attempt at creating devices that can carry out logic operations, we will employs devices that control the flow of water. how the water flows determines the result of some logic operation. As an example, let us begin with a water-flow device that carries out the AND operation, specifically: $z=x y$.

Figure 2.1 shows a drum to which there are four pipes of equal gauge attached. Each input and output is associated with one pipe each. For the inputs x and y, we can represent a value of 1 (or T) by pumping water in through their respective pipes. Likewise, we can represent 0 (or F) by not pumping any water in through either or both of these pipes. We also interpret a flow out through the z pipe as a 1 , and no flow as a 0 . The flow of water (or lack of it) trhough the drain pipe is not relevant, so we ignore it.

How does this drum carry out the logical AnD operation? How does it behave as an "AND gate"? Let us consider all four possible input combinations:

- Case $00_{2}-x=0$ and $y=0$: No flow enters the drum through the x and y pipes. Therefore, no flow exists the z pipe, implying that $z=0$, which is the correct result for AND.
- Case $01_{2}-x=0$ and $y=1$: No flow enters through the x pipe, but it does enter through the y pipe. The water that flows in through y then flows out of the drum through the drain pipe. Since the drain allows the water to exit the drum as fast as it enters, the water level never rises to the z pipe, and thus no water flows out through the z pipe. Thus, the device emits $z=0$, which is correct.
- Case $10_{2}-x=1$ and $y=0$: This case is analagous to the previous case 01_{2}.
- Case $11_{2}-x=1$ and $y=1$: Flow enters the drum through both the x and y pipes. Because the water exits the drain pipe at half the rate of the total incoming flow, the water level will rise in the drum. After some time - a period knows as the gate delay-water will begin flowing out of the z pipe. This outflow represents the correct result for this case of $z=1$.

Because of the gate delay for case 11_{2}, one must wait for at least that period of time after presenting new input flows (or lack of them) before the output of z is guaranteed to be correct. In any previous moment, the gate may still be altering the water level, and the output may not yet be stable. For different gate designs, the gate delay may have slightly different causes, and the duration of the delay will vary.

OR gate: Let us now consider how to construct an or gate from this type of water drum. Constructing such a gate requires only that we swap the labels of the drain and z pipes from the water-drum AND gate. To see that this simple inversion works, consider the four possible input cases:

- Case $00_{2}-x=0$ and $y=0$: Input flow from neither the x nor y pipes implies no output flow through the z pipe, implying correctly that $z=0$.
- Cases 01_{2} and $10_{2}-x=0$ and $y=1$; or $x=1$ and $y=0$: The flow into the drum from one of the two inputs flows out of the z input, yielding the correct result of $z=1$.
- Case $11_{2}-x=1$ and $y=1$: The flow into the drum from both x and y pipes will cause both a flow out of the z pipe and a raising of the water level in the drum. That excess water will eventually flow harmlessly out of the drain pipe. The flow out of the z pipe implies the correct result of $z=1$.

Notice that for this OR gate, the gate delay is much shorter. When new input flow is presented, one must wait only the time required for the water to fall down the drum and begin exiting the z pipe. Thus, thr output of this OR gate is guaranteed to be correct more quickly than the and gate.

NOT gate: We are missing one critical capability - a gate that performs logical negation. We need a device that carries out $z=\bar{x}$. Notice that, unlike the other two gates that we have devised, this one must produce an output flow when there is no input flow. therefore, it must have a "power source" - an input flow that is not one the logical arguments to the operator. We leave it as an exercise to you, the reader, to device a water-drum not gate that...

- ... when $x=0$, the flow from the power source is directed to flow out of the z pipe, and ...
- ... when $x=1$, the flow from both x and the power source is directed to flow out of drain pipes.

2.4.2 Electronic silicon gates

The water-drum gates presented in Section 2.4.1 are meant to show the simple construction of devices capable of performing propositional logic operations. Of course, these water drums would operate correctly, but slowly. Real computing devices use semiconducting ${ }^{2}$ dilicon transistors instead of drums, and flowing electricity instead of flowing water. Typically, a flow of +5 volts represents a binary value of 1 , while 0 volts represents a value of 0 . Other than these changes in substrate, the functions of the silicon gates and the water gates are quite similar, but the former are much faster.

The construction of the silicon gates is beyond the scope of this book. [SFHK: Add REFERENCES TO DESCRIPTIONS OF TRANSISTORS, SILICON GATES, AND LITHOGRAPHY.]

2.4.3 Representing logic functions with gates

No matter the specific devices used, we will heretofore represent these logic gates as depicted in Figure 2.2. Critically, these gates can be composed analagously to the manner in which logic operators are algebraically composed. For example, Figure 2.3 shows an example of the composed logic function $z=w \oplus \overline{x y}$. The order in which a Boolean algebraic expression is evaluated is mirrored by the order in which input values flow into and through the gates, and ultimately to the circuit's output. In this example, one must first evaluate $\overline{x y}$; only then can the result of that evaluation be combined with w using the Xor operator to produce the result z. Analagously, the inputs lines x and y must have their values flow through the NAND gate first, then having the output of that gate flow as an input, along with the w line, into the XOR gate.

In closing this section, let us remember the high-level impact of composing gates in this manner: we can contruct a device that automatically computes the result of any propositional logic function for a set of given input values. Thus, any problem that can be expressed as a logic function can also be computed automatically by some arrangement of gates.

[^1]

Figure 2.2: Substrate-neutral, graphical representations of gates that implement various logic operations.

Figure 2.3: A gate-based circuit that implements the function $z=w \oplus \overline{x y}$.

2.5 Foreshadowing: Basic adder circuits

In Section 2.3, we saw how to express arithmetic addition of both 1-bit and 4-bit whole numbers as collections of logic functions. Here, we show hot o translate those logic functions into gate-based circuits, thus designing devices capable of carrying out these addition operations automatically.

2.5.1 A 1-bit half-adder

Recall that, in adding two 1-bit values- x and y-that two propositional logic functions are required to produce each of the values from the 2 -bit result. Specifically, the result $z=\left(z_{1}, z_{0}\right)$ is determined by the functions:

$$
\begin{gathered}
z_{0}=x \oplus y \\
z_{1}=x y
\end{gathered}
$$

Figure 2.4 a circuit to carry out this addition task, we can use the same two inputs to feed into gates that implement both logic functions and produce both output bits. Notice that any line that carries a flow can be split so that it can serve as an input to more than one gate. For example, x is divided at the dot labeled x-split, and then procides the same input value to both gates simultaneously. This dot is used to show the coinnection all line that meet at that point. Lines that cross without such a dot are not connected.

This combinational circuit implements 1-bit arithmetic addition. Present any two values as x and y, pause for the gate delay of both gates, and observe z_{1} and z_{0} to obtain the answer.

Figure 2.4: A half-adder that adds two 1-bit values.

2.5.2 A 4-bit ripple-carry adder

Adding 1-bit numbers provides a useful initial example, but it does not demonstrate well the more complex structures that can be devised to compute more complex problems. To provide a richer example, we examine the logic and circuitry for a 4 -bit adder.

Recall that the addition of 4 -bit values can be represented in the form shown in Figure 2.7. In that formulation, $x=\left(x_{3}, x_{2}, x_{1}, x_{0}\right)$ and $y=\left(y_{3}, y_{2}, y_{1}, y_{0}\right)$ are input values, while $z=$ $\left(z_{3}, z_{2}, z_{1}, z_{0}\right)$ and $c=\left(c_{4}, c_{3}, c_{2}, c_{1}\right)$ are 4-bit output values produced by the process of adding x and y. More specifically, recall that adding one set of bits of the same significance is defined by the formulas:

$$
\begin{gathered}
z_{i}=\bar{c}_{i} \bar{x}_{i} y_{i}+\bar{c}_{i} x_{i} \bar{y}_{i}+c_{i} \bar{x}_{i} \bar{y}_{i}+c_{i} x_{i} y_{i} \\
c_{i+1}=\bar{c}_{i} x_{i} y_{i}+c_{i} \bar{x}_{i} y_{i}+c_{i} x_{i} \bar{y}_{i}+c_{i} x_{i} y_{i}
\end{gathered}
$$

Figure 2.5 shows these two logic functions as combinational circuits. Collectively, we call these circuits a full-adder, since, unlike the half-adder, it incorporates the carry-in value. Furthermore, it produces the output for a single column's result $\left(z_{i}\right)$ as well as the input for the next column $\left(c_{i+1}\right)$. Now that we know how this full-adder is structured, we can draw it as a box with its three 1-bit inputs and its two 1-bit outputs, with no need to draw each individual gate.

Clearly, a full-adder is not, by itself, capable of adding two 4-bit values. However, by stringing together a sequence of four full-adders, we can construct a 4 -bit adder. The key observation is that the carry-out of one full-adder may be connected to the carry-in of the next, thus properly carrying those value from a less significant column to the next more significant one.

Figure 2.5: A full-adder that adds three 1-bit values.

Figure 2.6 shows how four full-adders can be arranged to add two 4 -bit values. First, notice that c_{0} seems to be a superfluous input. By setting $c_{0}=0$, we ensure that this extraneous input has no effect on the result. In the diagram, the triangle-like sequence of lines that serve as a source for c_{0} is the symbol for connecting a line directly to ground-that is, this line will carry 0 volts to represent the input value of 0 .

Figure 2.6: A 4-bit ripple-carry adder constructed from a chain of full-adders.

Second, notice that c_{1}, c_{2}, and c_{3} are both input and output values. This dual role reflects directly the role of carry digits in pencil-and-paper addition - the "excess" of one column in carried into the next.
Third, recall the issue of gate delay (define in Section 2.4.1). If we present all of the inputs at time t_{0}, then we cannot trust the outputs of the least significant full-adder $\left(z_{0}\right.$ and $\left.c_{1}\right)$ until the accumulated gate delay has passed. If we peek inside out full-adder circuit, we see each of the outputs is the result of waiting for a group of NOT gates, then a group of and gates, and finally a multi-input OR gate (which may be implements as a collection of 2-input OR gates). Critically, all of the nOT gates do their work at the same time - concurrently. The same is true of the AnD gates, and of the two OR gates. Thus, if a not gate's delay is $d_{N O T}$, an OR gate has delay of $d_{O R}$, and an AND gate has delay $d_{A N D}$, then the total delay for both outputs of a full-adder is $d_{F A}=d_{N O T}+d_{A N D}+d_{O R}$. Thus, at time $t_{0}+d_{F A}$, we can trust that z_{0} and c_{1} are correct and will not change so long as the inputs x and y are unchanged.

Now for the catch: z_{1} and c_{2} cannot be trusted until the second full-adder has had sufficient
time to process its inputs. However, although x_{1} and y_{1} may have been presented to their full-adder at time t_{0}, c_{i} will not be guanateed to be a correct input until $t_{0}+d_{F A}$. Thus, z_{1} and c_{2} will not be reliable ouput values until $t_{0}+d_{F A}+d_{F A}=t_{0}+2 d_{F A}$.

This pattern continues: z_{2} and c_{3} are not reliable until time $t_{0}+3 d_{F A} ; z_{3}$ and c_{4} become reliable at time $t_{0}+4 d_{F A}$. Thus, the delay for the complete 4 -bit adder is $4 d_{F A}$. This delay is dictated by the critical path - a path through the circuit from some input to some output where the sum of hte gate delays along that path is maximal for that circuit. Here, the critical path from, say, x_{0} to z_{3} flows through a sequence of gates whose cumulative delay is $4 d_{F A}$. This critical path is not unique, as others (e.g., starting at y_{0} and ending at c_{4}) have identical gate delay sums.

We have created a circuit that, given time $4 d_{F A}$ to do its work, will automatically add any two 4 -bit whole numbers. This device is made of nothing but the simple gates that perform simple propositional logic operations, yet the device itself performs a task that is not itself a logic operation.

2.6 More propositional logic

We have now seen simple demonstrations of using logic operators (AND, OR, NOT) and devices that carry out those operations (gates) to automatically perform a task-integer addition - that is not itself propositional logic. Now that we have seen how logic can be used to perform computation, we must become somewhat more proficient in this type of logic.

2.6.1 Boolean algebra

When working with Boolean expressions, we can apply algebraic rules that are familiar to us. We can also apply a few rules that are valid for Boolean algebra, but not for traditional algebra. Specifically:

- Identity:

- OR: $x+0=x$
- AND: $x 1=x$

- Commutativity:

- OR: $x+y=y+x$
- AND: $x y=y x$

- Associativity:

- AND: $x+(y+z)=(x+y)+z$
- OR: $x(y z)=(x y) z$
- Distribution: $x(y+z)=x y+x z$
- Zero: $x 0=0$
- One: $x+1=1$

Finally, there are a pair of special rules known as DeMorgan's Laws:

$$
\begin{aligned}
& \overline{x y}=\bar{x}+\bar{y} \\
& \overline{x+y}=\bar{x} \bar{y}
\end{aligned}
$$

With these rules, we can manipulate any Boolean expression. In particular, we can use these properties to establish the equivalence of expressions; we can also use the properties to simplify expressions. For example, consider the following transformation from one expression that performs the XOR operation to another:

$$
\begin{gathered}
x \oplus y \\
=(x+y)(\overline{x y}) \\
=(x+y)(\bar{x}+\bar{y}) \\
=\bar{x} x+x \bar{y}+\bar{x} y+\bar{y} y \\
=0+x \bar{y}+\bar{x} y+0 \\
=x \bar{y}+\bar{x} y
\end{gathered}
$$

2.6.2 The generality of truth tables

No matter what combination of operators used to compose a logic function, a truth table can always be constructed that represents that function. For example, consider the following arbitrary, 3-input function:

$$
z=\overline{(w \oplus \overline{x y})(\bar{w} \bar{x})}
$$

This function has no intuitive or obvious "meaning." It is merely an arbitrarily constructed function. We can construct its truth table by carrying out the function on all possible inputs, as shown in Table 2.16.

This type of conversion from a logic function to a truth table is straightforward. However, it is less clear how to convert from an arbitrary truth table to a logic function. It is important to note that any different logic functions may produce the same truth table - that is, there are functions that are semantically equal but syntactically different. For example, consider these three simple functions:

$$
\begin{gathered}
z_{A}=(x+y)(\overline{x y}) \\
z_{B}=(x+y)(\bar{x} \bar{y}) \\
z_{C}=\bar{x} y+x \bar{y}
\end{gathered}
$$

w	x	y	$\overline{x y}$	$\bar{w} \bar{x}$	$w \oplus \overline{x y}$	z
0	0	0	1	1	1	0
0	0	1	1	1	1	0
0	1	0	1	0	1	1
0	1	1	0	0	0	1
1	0	0	1	0	0	1
1	0	1	1	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	1	1

Table 2.16: Translating an arbitrarily chosen, 3 -input logic function into a truth table by evaluating the components of the function and adding them to the truth table, building towards the final function.

Superficially, these are three different 2-input functions. However, they all implement the XOR operation, producing the same outputs for any given input ${ }^{3}$ Thus, for a given truth table, an arbitrary number of syntactically different functions will produce the correct semantic result. How can one systematically convert any truth table into a corresponding logic function?

2.6.3 Normal forms

Consider our previous, arbitrarily chosen, 3-input logic function and the corresponding truth table shown in Table 2.16. We can use that truth table to produce a function of a specific syntactic form by following a set of mechanistic steps. To do so, we begin by listing the input values of w, x, and y that results in $z=1$. Table 2.17 shows the six cases fitting that description. Along with each such input combination, the table also shows how each such set of input values can be translated into a conjunctive term - that is, expression of w, x, and y such that the three are combined by the AND operator. Moreover, for each such term, if the variable in question for that case should be a 1 , then the variable is written in an unmodified, "positive" form; if the variable should be a 0 , then it should be inverted by the nOT operator before being conjoined with the other variables. For example, in the case where $z=1$ when $w=0, x=1$, and $y=0$, then the conjunctive term we seek is $\bar{w} x \bar{y}$.

Given these six conjunctive terms (in this example), we then disjoin them-that is, combine them with the OR operator. Theresult is a complete expression of z :

$$
z=\bar{w} x \bar{y}+\bar{w} x y+w \bar{x} \bar{y}+w \bar{x} y+w x \bar{y}+w x y
$$

For any assignment of values to the input variables that should yield $z=1$, exactly one of the conjoined terms will evaluate to 1 . Since all of those conjoined terms are then disjoined to form the whole expression, having any one conjoined term evaluate to 1 is sufficient for the entire expression also to evaluate to 1 . For example, consider the evaluation of $w=1$,

[^2]| w | x | y | conjunctive term |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | $\bar{w} x \bar{y}$ |
| 0 | 1 | 1 | $\bar{w} x y$ |
| 1 | 0 | 0 | $w \bar{x} \bar{y}$ |
| 1 | 0 | 1 | $w \bar{x} y$ |
| 1 | 1 | 0 | $w x \bar{y}$ |
| 1 | 1 | 1 | $w x y$ |

Table 2.17: For an example 3-input function, the six combinations of input values that cause a result of $z=1$ and the corresponding conjunctive terms.

$\bar{w} x \bar{y}+$	$=\overline{1} 1 \overline{0}+$	$=011+$	$=0+$
$\bar{w} x y+$	$\overline{1} 10+$	$010+$	$0+$
$w \bar{x} \bar{y}+$	$1 \overline{1} \overline{0}+$	$101+$	$0+$
$w \bar{x} y+$	$1 \overline{1} 0+$	$100+$	$0+$
$w x \bar{y}+$	$11 \overline{0}+$	$111+$	$1+$
$w x y$	110	110	0
			$=1$

Table 2.18: Evaluating the example expression where $w=1, x=1$, and $y=0$, where exactly one conjunctive term evaluates to 1 , causing the whole disjoined set of terms to evaluate to 1 as well.
$x=1$, and $y=0$ shown in Table 2.18. Each row in this table shows one conjunctive term from the disjoined six, and then shows how each is evaluated to each a final result.

As you might expect, for any assignment of values to w, x, and y where the result is $z=0$, none of the conjunctive terms will evaluate to 1 . Thus, the disjoining of a collection of 0 results is always 0 , yielding the correct answer for that case.

This form of expression-a collection of conjoined terms, with each such term combining each input or its inversion, with all such terms disjoined-is the disjunctive normal form ($D N F$), or the or-of-ands form. As we have just seen, any truth table can be converted into a DNF expression. A corrolary of this observation is that three logic operations-AND, OR, and NOT-are sufficient for composing any logic function. Thus, the gates that perform this three operations are also sufficient to implement a device that carries out any logic function.

Note that there is also a conjunctive normal form (CNF): a set of disjunctive terms, each of which contains all of the input variables (or their inversion), all conjoined to form an expression. For example, the following function is expressed in CNF:

$$
z=(\bar{w}+x+\bar{y})(w+\bar{x}+\bar{y})(w+\bar{x}+y)
$$

Because this form is not as intuitively derived from a truth table as DNF expressions, we will not use it. However, any DNF expression can, through algebraic manipulation, be transformed into a CNF expression and vice versa.

x	$\overline{x x}=z$
0	1
1	0

Table 2.19: The truth table for $z=\overline{x x}=\bar{x}$, showing NAND configured to perform the NOT operation.

$$
x \rightarrow-\overline{x x}=\bar{x}
$$

Figure 2.7: A combinational circuit using only NAND gates to carry out the NOT operation.

2.6.4 Minimal operators

The observation that AND/OR/NOT are sufficient to express any logic function poses the following question: Do we need all three of those operators? Can we compose any logic function from just two, or perhaps even one logic operator? Note that to prove that fewer operators are sufficient, we need only show how to compose the one or two operators such that they perform AND, OR, and NOT, whose sufficiency we have already demonstrated.

Let us consider the NAND operator, defined by the truth table shown in Table 2.12, and defined by the function $z=\overline{x y}$. Then let us see how this one operator can be composed with itself to carry out NOT, and, and OR.
not : Although NAND is a binary operator (that is, it operates on two 1-bit inputs), NOT is a unary operator (it operators on one 1-bit input). Thus, consider using the same variable for both of a NAND operator's inputs:

$$
z=\bar{x}=\overline{x x}
$$

That is, x is nAND'ed with itself. Since x is the only input, we can use the simplified truth table shown in Table 2.19 to prove that $\bar{x}=\bar{x} \bar{x}$, and thus that nand can be used to invert a value. Figure 2.7 shows the combinational circuit, using only a NAND-gate, that performs the NOT operation.
and : Now that we have established that NAND can perform the NOT operation, we can use both operators in determining how to perform AND using only NAND. The following expressions, as well as the truth table shown in Table 2.20, show the equivalence:

$$
z=x y=\overline{\overline{x y}}=\overline{\overline{x y x y}}
$$

x	y	$\overline{x y}$	$z=\overline{\overline{x y}}=x y$
0	0	1	0
0	1	1	0
1	0	1	0
1	1	0	1

Table 2.20: The truth table for $z=x y=\overline{\overline{x y}}$, showing NAND configured to perform the AND operation.

Figure 2.8: A combinational circuit using only NAND gates to carry out the AND operation.

x	y	$\bar{x} \bar{y}$	$\overline{\bar{x}} \bar{y}=x+y$
0	0	1	0
0	1	0	1
1	0	0	1
1	1	0	1

Table 2.21: The truth table for $z=x+y=\overline{\bar{x}} \overline{\bar{y}}$, showing NAND configured to perform the or operation.

Again, we can prove this equivalence with the truth table in Table 2.20, we can also see, in Figure 2.8 the combinational circuit that implements AND using only NAND gates.
or : Finally, we have the ability, using only NAND gates, to perform NAND, AND, and not. With these three, we seek to perform the or operation. The formula below shows the equivalence between an arrangement of nAND operations and the OR operation. Table 2.21 and Figure 2.9 show the truth table and combinational circuit, respectively, that reflect this formula.

$$
z=x+y=\overline{\overline{x+y}}=\overline{\bar{x}} \overline{\bar{y}}
$$

Figure 2.9: A combinational circuit using only NAND gates to carry out the or operation.

The big picture: These three simple circuits, using only NAND gates, are sufficient building blocks to implement any logic function. Moreover, we will see that they are therefore sufficient to implement any computation. NOR is likewise sufficient; we leave it to the reader to develop AND, OR, and NOT expressions and circuits based solely on the NOR operator.

2.7 Circuit simplification

We can see from the 4-bit adder example that circuit structures for any non-trivial task are complex. For those constructing circuits by hand, each additional gate adds not only labor but also an opportunity for a miswiring error. For mass-produced circuits, each additional gate occupies valuable chip space, consumes more energy, and produces more waste heat.

Therefore, we have many reasons to simplify our circuits. Doing so requires simplifying the corresponding logic - that is, for a given truth table, finding the correspoinding logic function that uses the fewest logic operators. Since each oiperator is implemented by a gate, these minimal functions yield the smallest circuits.

2.7.1 Karnaugh maps for 2-input functions

Normal forms provide simple, mechanistic approaches top translating a truth table into a logic function. However, normal form functions are rarely minimal. Here, we examine an alternative method for t ranslating truth tables into logic functions-a method that, by finding certain patterns, allows us to create a minimal logic function.

Consider the Nand function, whose 2-input truth table is shown in Table 2.12. We can easily convert this truth table into a DNF logic function ${ }^{4}$.

$$
z=\bar{x} \bar{y}+\bar{x} y+x \bar{y}
$$

[^3]Figure 2.10: The layout of a Karnaugh map for the 2-input NAND function.

Figure 2.11: A 2-input Karnaugh map, with rectangles encapsulating simplified conjunctive terms.

In order to devise a syntactically shorter function, we begin by writing our truth table in a special form, known as a Karnaugh map, as shown in Figure 2.10. For this map, the vertical axis is labeled with the possible values of $x(\bar{x} \Leftrightarrow x=0, x \Leftrightarrow x=1)$, while the horizontal axis is labeled analagously with the possible y values. Then, each position on the map corresponds to some specific choice of values for the two input variables. Moreover, that choice of values for the input variables corresponds to an output value for z. That z value should be placed in the aofrementioned location in the map, thus showing the function's result for those inpuit values associated with that position.

Next, one must find rectangles of 1's. A rectangle that encoloses 1's with no 0's included identifies a simplified conjunctive term that will be part of a completed expression for the entire function, where the conjunctive term has factored out superfluous variables. Figure 2.11 shows the rectangles for a Karnaugh map of the nand function. These rectangles can be horizontal or vertical, and they may overlap. Using this example, we can examine what each of these rectangles represent:

- α : This rectangle encapsulates two 1's, and thus two input patterns that cause the function to evaluate to 1 , specifically $x=0, y=0$ and $x=0, y=1$. Notice that for both of these cases, $x=0$. Graphically, we see that commonality in that α spans \bar{y} and y columns, but stays within \bar{x} row.
- β : Similarly, the two 1's encapsulated by this rectangle are produced by the pair of input patterns $x=0, y=0$ and $x=1, y=0$. This rectangle spands the rows \bar{x} and x, but stays within the column \bar{y}, thus graphically representing that $y=0$.

Each rectangle represents a single conjunctive term that is simplified-that is, unlike a conjunctive term in DNF, it may not contain every input variable. Specifically, each rectangle represents a term composed of the common input variables (or their inversions), with those input variables that are not in common excluded. For example, α represents the term \bar{x}. We can obtain this same simplification by applying Boolean algebraic rules to a DNF expression of the input patterns to which α corresponds. That is:

$$
\alpha=\bar{x} \bar{y}+\bar{x} y
$$

If we factor out \bar{x}, apply the disjunctive ones property, and then the conjunctive identity property, we get:

$$
\alpha=\bar{x}(\bar{y}+y)=\bar{x} 1=\bar{x}
$$

Thus, α here represents the term \bar{x}, which is a substantial simplification of $\bar{x} \bar{y}+\bar{x} y$. Similarly, β can be shown to represent \bar{y} as follows:

$$
\beta=\bar{x} \bar{y}+x \bar{y}=\bar{y}(\bar{x}+x)=\bar{y} 1=\bar{y}
$$

The terms represented by the rectangles can then be disjoined, thus forming the complete, simplified expression:

$$
z=\bar{x}+\bar{y}
$$

Notice that the two rectangles overlapped at $\bar{x} \bar{y}$. Such overlaps are valid. For the input pattern corresponding to an overlapping region, the consequence is that more than one of the conjunctive terms in the final expression will evaluate to 1 . Here, when $x=0, y=0$, then $\bar{x}=\bar{y}=1$. But since those terms are disjoined in z, whether one or both evaluates to 1 is irrelevant - the end result is that $z=1$.

Thus, the reatage a her frepresents the term \bar{x}, which is a substantian simpification of $\bar{x} \bar{y}+\bar{x} y$. Similarly, the retangle B spans the terms that concal, and is contained by

$$
\bar{x} \bar{y}+x \bar{y}=\bar{y}(\bar{x}+x)=\bar{y}(1)=\bar{y}
$$

The trims ropesaticd by the rettudles can then disjoired, thoos forming the couplate, simptifed exprission:

$$
z=\bar{x}+\bar{y}
$$

(1) Kanough maps- 3 inputs

The t-2-imat exomple abore stons noost of the basics of using Kanaghe mops to sumplity hacic fractions if 2 -upt tactions ar: so sunte that the Ale ot the konagn vapis iot dion.

ω	x	y	z
\mathbb{Q}	\mathbb{Q}	0	1
\mathbb{Q}	\mathbb{Q}	1	1
0	1	x	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	Q

Now consider the Karnaigh map for this same 3－imput function：

First，notice ho let us write this function in DNF：

$$
z=\bar{\omega} \bar{x} \bar{y}+\bar{\omega} \bar{x} y+\bar{w} x \bar{y}+\bar{w} x y+\omega \bar{x} y+\omega_{x} \bar{y}
$$

Second，bettor simplifying this lengthy expression，we shook consider how the Karnaugh map is conffured．We have only too dimensions to the table，but we have three inputs to reprint． So the column labels specify not one，but two of the input variables x and y ．Notice that there are four columns－one for each possible combination of区 $\frac{x}{1}$ and $\frac{\bar{x}}{3}$ with y and \bar{y} ．Meanwhile，\underline{w} and IT are the labels ${ }^{3}$ for the rows．The table therefore las $2 \times 4=8$ entries－one for each possible combination of input value for x, x ，and y ．
The is one additional，critical aspect of this table＇s conformation． Notice the progression of the column labels．Typically，the counties binary counting sequence follows the integers：＇© ©（ $\bar{x} \bar{y}$ ）； QI $(\bar{x} y) ; 1 Q(x \bar{y}) ; Y 1(x y)$ ．How ere，the column（beds fol to， a different pagassion：$Q \mathbb{Q}(\bar{x} \bar{y}) ;$ 多多 $1(\bar{x} y) ; \|(x y) ; 1 Q(\overline{x y})$ ．
Why the altered progression？Karnaugh maps ra For Kamaing maps to
work - that is, for the rectangles correctly to identify factorizations of superfluous terms - then each column label must have at a term in common with the lubes on each acjacelterm. That is, from one column to the next, the labels must have either an x, an $\bar{x}, a y$, or a \bar{Y} in common. The standard counting sequence lacks this property. Speafirally if $\bar{x} y$ and $x y$ are adjacent to one another, as the would be for the standard sequence, them those, two columns have no term in common. In contrast, notice that the sequence n on on the example Kornaigh map has this property; every column has a term in common with those adjacent.

A jain, we find rectackes of I's. Note that each rectande must have a pacer-of-2 size for for each dimension. That is, the rectangles may be $1 \times 2,2 \times 1,4 \times 4,4 \times 2,1$ or 2×2. A $1 \times 3 \approx, 3 \times 1,2 \lambda 3$, or 3×2 restage is invalldeer because the I's in such a rectangle would not all have terms in common. However, the valid rectangle sizes contain 15 all trot which will have terms in common. For example, consider our three rectangles able:
a) This rectangle spans $\underline{\omega}$ and ω, so that term can be eliminated. The two I's contained by α both the are contained in the column $\bar{x} \bar{y}$, and thus have those terms in common. This rectangle represents, in the simplified expression, the conjugative term $\bar{x} y$ '.
B) Like α, $\bar{\omega}$ and w cam be emanated. Hex, through, x this rectangle, so β represents: $x y$.
8) This $4 x 1$ rectank spans all combinations of x, \bar{x}, y, and Y. However, the retangle is contained by the row w, and thus γ ' represents. $\bar{\omega}$. Notice that larger rectangles imply a larger number of factored terms, ad this shorter ex Disjoin the three conjunctive terms, and our simplified form is?

$$
z=\bar{x} \bar{y}+x y+\bar{w} .
$$

(c) 4-input Karnewh maps

Now that we see how to arrange two input variables along a single dimension of a Karnagh map, we con apply, the same approach to both axes of the map, allowing for for impi variables. H et us again consider a orbitery truth table and than its corresponding Kanuigh mai.

The troth table represents no immediately or infutiney recognizade function. Its DNF is lengthy:

$$
\begin{aligned}
z= & \frac{\bar{v} w x y+}{v} \bar{w} y+ \\
& \bar{v} \bar{w} y+ \\
& \bar{v} \bar{w} y+ \\
& \bar{v} w \bar{w}+ \\
& \bar{v} w x y+ \\
& v \bar{w} \bar{x}+ \\
& v \bar{w} y+ \\
& v \omega \bar{x} y+ \\
& v w x y+ \\
& v w x y
\end{aligned}
$$

The 4-input map is confgued
 mosh like the 3-ingut, exupt the reach dimension of the map is labeled with foo input variables: \underline{v} and $\underline{\omega}$ for the rows, and x and y for the columns. Again, each
row or tale column label must have tore term in conner with pits adjacent labels. So, both raw and colum follow the special profession: QQ, 区, H, \&

In this example, we find five rectangles: two 4×1 rectangles (α and β); one 2×2 rectangle ($\underline{\gamma}$); and two 2×1 rectangles $\left(\frac{\delta}{T}\right.$ and ϵ). Again, each rectangle encapsulates a set of ITs repress input values that evaluate to I for this function, and that can be expressed as a single conjuctive term. So:
a) This rectangle spans every column, and thu y every combination of x, and their negations. However, it is also contained ${ }^{3}$ within the row $\bar{v} \bar{\omega}$. Thus, if $v=0$ and $\omega=0$, then $z=1$ irrespective of the values of x and $\underset{\sim}{t}$. So, this rectangle \therefore represents the term: $\underline{v} \frac{\underset{w}{w}}{}$.
B) This rectangle is analagous to α. Here, the map shows the, if $x=Q$ and $y=Q$, then $z=1$ no matter the values of \underline{v} and \underline{w}. Thus: $\bar{x} \bar{y}$.
8) This 2×2 rectangle is an interesting one in that it wraps acand" from one edge of the map to the other. This That is, column wy is adjacent not only. to $x y$, but also to $\overline{x y}$. tinenise Fhasy $\frac{\gamma}{l}$ spans \bar{V} and \underline{v} (vertically) as well as \bar{X} and \underline{x} (horizontally by wherrapping around.) The rectangle is contained within the $\frac{w}{c o l u m a s}$ and the \bar{F} columns that is, if $w=1$ and $y=Q$, the value of v and x have no effed, since $z=$ in all such cases. So'. wy.
5) This 2×1 rectange is much like those of smaller megs. It is contained by the row vo and within the colum $x y$ and $x y$. Thus, the I's in this ratangle occur when $y=\omega=x=1$, irrespective of the value of y. So: v vi.
E) This 2×1 rectangle wraps around vertically, showing that V̄ and V̄̄ an adjacent rows because of their common term $\underline{\bar{\omega}}$. This rectangle is a bo contained within the column $\bar{x} y$. So, all 1 Is is this rectank occur when $x=\underline{\omega}, \underline{x}=Q$, and $y=1$, regardless of the value of $x: \quad \bar{\omega} \bar{x} y$.

When we disjoin the terms implied by these five rectangles, we obtain the simplified expression:

$$
z=\bar{v} \bar{w}+\underset{\beta}{\bar{x}}+\underset{\gamma}{w} \underset{\gamma}{w}+\underset{\sigma}{v} \underset{\omega}{w} \bar{x} y
$$

(1) Karnough maps are not easily extended beyond four inputs. For a leger higher andy functions, there are two options, neither of what h we explore in depth?
(1) Algbiait simptifrotion: Like any algebra, the various properties of Boolean algebs allow expressions to be manipulated andy simplined. However, this method of simplification requires practice and crostrity and thus is beyond the scope of this book.
(2) Circuit simplification algorithms I More advanad techniques, indeding those the perform extensive searches of the possible solutions, haw bear are performed by carse complex software. The most advanced of the pols ce proprietary thad e sects, Because our goal is to understand how a simple system can be construeted, and not how complex seems ore optimized, this book will not address such tools.
(2) Memory I. Motivation
the have circuits for each circuit that we have created, we have assured that some input vales - sone collection of 1 's and Φ ' s-mould be provided as the inputs. From whence cone these input values? So far, thar ax two chores:
(1) 虎 \quad tame

Direct inset: By connecting, an input to a flow (e.g., a water pump oo r wakr-bused gates; a OV BOr +5V electrical' source for silicon gates). Thus, the value is provided by something external to the circuit and the logic it represents.
(2) Outputtinpt chain: The outat of some other gate may be used as the imper to another a Aundaneral al chuructenstic that allows gates to us to implemat composed logic functions using gates. Herp, the value is provided intern nally, as one component of a lager circuit.
So far, all of our y logic and circuits have been combinational, in that they are a functional, mancy-to-ore mapping of n input values to $\frac{1}{5}$ output value.. That value is computed by a direct Flow from the imports, through the gates, and, after the delay curated by the critical paths, to the atputs.
Whin This chapter intrigues another possibly, Mot values provided by memory. elemats. Here, sone Batembinery value will be recorded at some earlier time, and the used
as an input by som gate. That input value will persist until a new vilue is rocorded in thet same memony elemant.

In order to see why 拃. we would want such mevory elonenbs, we will consider, in Section (2.I. (, a stmuk The riest simple of sequestial lok arcints. This type
 Which is whif we must addrss quenery elewnans themindues first. Note, hower, thet memory elemets will be just as tonetumald to comptation as tem rocsin itset: withoot dat
 impossible
(A) Action exumple: The togate

Imagia thet yo wat a derice dut will parmer oreot tion ctemate betroun one of two posikhe tates. For exaite, \&ecotwo small children are sharing atoy and you wat. devie thet rewemess - whise of the fwo dildon's tureit
 yos want b te tecut the core of the x-sx sion angw indicutor. For bothe dences, ther is a sive tombitton that ore awld pers to toge the state of the ceriui from
 + Ambert's posession a^{t} the next juph-ball o bisifaras, of vie kga.

This device con also be viewed as a 1-bit counter. Inti All odometers ref a firploy a fixed number of diss. Thus, their range is banded, and eventually, they must rollover", resetting of zero. A l-bit counter is an odometer with a single binery digit. After incrementing from Φ to 1 , the nest incceramation must, force a reset to Q game.
Theforing to Given this description of a ene device that whose output oscillates between Q or 1 , how $\#$ can we strootre a circuit to implement the device? 立n We must imagine that the one external input - the button that toggles the ratal - is provided as an T line that carries Q when the button is not being pressed, and 1 when it is. This input will serve as a trigger to a memory elements which peon. This memory element will have two ipts-the following annals and outputs:

- Data etptinput: The value that the memory element will adopt when the Arojer is actives.
- Ba Trigger input: When this input is \otimes, the data in pt is ignore. When it is becomes 1 Qhastruste thess defadl], the otpotomemory element adopts the data input's value. That value.
- Data outat: This line emits the memory elements carat value. That is, it is the vale of the data opt at the time that the frise input was kit asserted

Thus, we memory element holds and emits a single bit value. We can set the value of the element at any time by placing the value on the data input line and then cycling-chouning from Q to 1 and again to \otimes - the trigger input.
So, with this description of a memory element, how can we construed our device? The heart of this 1-bit counter is a feedback loop, centers on the merry element. Specifically, the atput of the memory element is the current state"- the value of the counter, the child's furn, or the jut pose possession arrow's direction. Thus we want the input to the memory element to contain be the value next state - the sate of the device after thy button is pressed. We can make a state transition table that lists every possible current state and matches it to the corresponding next state. Hes: For this example, that table is:

current state	next state
1	1

If we Given that the caterfat of or, memory element, which we will name Q, is the current state, and that the data input,' heretofore D, is the mast stack, we

- can rewrite this table:

cher	D
Q	1
1	0

That is, We can now express D as a function of Q :

$$
D=Q
$$

We now use this fable to construct our canter circuit:

In this circuit, the we rename the trigger as the dock line, and label it C. (This renaming will seem more infurtive lateryita for mow, it is the line that contras the rate of procession of the counter.) By connecting our extemal button to C, we now have our toggle If device, which shows' its atput on Q to which we could attach som astpot dowie (e.g., a light) to observe the currant state. This creon is
Now that we see the simplest of sequential logic circuits, we must imestrigat how the heart of such circuits - the armory elements -are constroted.
II. Memory element structures

There is more than ore way to construct a men ore element. form involve for comprents that are fondamatally different from the gites we have bees using. In fist, The types
of computer with which you may be familiar do not use gates at all: RAM;' hard disks; CD's and DVD's; first rives. The construction of is the memory elements that compose those devices are beyond the scope of this book. Thin existence has less to do with
They exist because the y make for economic forms of memory, especially at large scales (e.5, giject) grable क memories and larger g)
However, Memory can be constructed using the gates with which we are Tamuraribl Doing so makes for the faster th type of memory available. Dor goal is to use the components with whin we art familiar . these lgicgatesto construct memory elements. We will move through a progression of constructs, each building upon and improving previous design.
(A) S-R lathes

Let us begin with a memory element whose inputs are slightly different: Specifically, let the two inputs be:
(1) Set (S): Set the memory element to store Land Q to become) 1 .
(2) Reset (R) : Set the memory element to stor L and Q to become) \otimes.

Schematially, then, we haci

 of S to couse Q to become 1 , and to reminin $\frac{1}{1}$ aft S is no lomer being assetted. Similaty Q_{0}
 If is no lager assertes. Thus this memory elemet, Kuown as an Sek hath, will hak ano cotact E that is cetermext by the nutt racit assetion bo or 1. Ifatome (7) Wharor if an R latch is undefined if beth 2 and Is are asereded comemontly. 3
We can try to egaress to lifin of this memory dematt viry " toth timble' tet enot:

S	R	Q
C	4	$R_{B} ?$
4	1	Q
1	8	1
1	1	$x-$

Notice that the nornal fotw the forme das wot puite work: A偠 Any cutiontiond icutt hay have uncetined atpus on sme inftsong as we have her for $S=1$ and $R=1$. Wht is unuxual is flat for
ore inpot combination $\cdots=1$ and $S=S$ and those ilpots ue inoutticet to dernime the stput Q_{0}.的

 thos cirnut ir net iontratinal, iwe the eutpot is at

Notes

$$
\begin{aligned}
& E_{x}=S \bar{R}+\bar{S} Q=\bar{R}(S+\overline{S Q})^{C}
\end{aligned}
$$

$$
\begin{aligned}
& \text { a } L_{\infty} \\
& k^{1}-\cos \\
& x-s+\vec{b} \\
& =z+(x+a) \\
& =-2+\sqrt{x} x \\
& =\bar{E}(k+Q) \\
& \therefore x^{4}+\sqrt{x}+1 \\
& 5 x+3(x)
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow 5(1+Q)+5 Q \\
& S+S Q+5 Q \\
& S+(S+S) Q
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-5+4}{2+5+4}
\end{aligned}
$$

there is a value that from Note that at any given moment, receuth asset: Q indicates whether \geq or R was most and an input? Consider a new truth table:
$\left.\begin{array}{ccc|c}S & R & Q & Q \\ \hline \infty & D & D & 0 \\ 0 & 0 & 1 & 1 \\ Q & 1 & 0 & D \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & Q & 1 & 1 \\ 1 & 1 & 0 & - \\ 1 & 1 & 1 & -\end{array}\right\}$ determined by Q

Here, we still haves undefined output when $S=1$ and $R=1$; but we no longer have an output that cannot be determined by the inputs. So what is the function that this truth table defines? In DNF:

$$
Q=\bar{S} \bar{R} Q+S \bar{R} \bar{Q}+S \bar{R} Q \quad[\bar{S}: \text { Add te circuit. }]
$$

arathat may seem odd is that Q is defined in trims of itrett.
These is $\frac{0}{\text { is }}$ defined recursively that allows the circuit to imprest is this very

- Macharaiteristic that allows the circuit to implewut emery -to emit values based on its own value, ir (somewhat) indepareat of ar external inputs.

With the application of some Boolean algebraic transformations, this form function can be substantially simplified.

$$
\begin{aligned}
Q & =\bar{S} \bar{R} Q+S \bar{R} \bar{Q}+S \bar{R} Q \\
& =\bar{S} \bar{R} Q+(\bar{Q}+Q) S \bar{R} \\
& =\bar{S} R Q+S \bar{R} \\
& =\bar{R}(\bar{S} Q+S) \\
& =\bar{R}(\overline{S Q}+S(S+\bar{S}))=\bar{R}(\bar{S} Q+S(1+Q)) \\
& =\bar{R}(\bar{S} Q+S S+S \bar{S})=\bar{R}(\bar{S} Q+S+S Q) \\
& =\bar{R}(\\
& =\bar{R}(S+(\bar{S}+S) Q) \\
& =\bar{R}(S+Q) \\
& =\frac{R}{R}+(\overline{S+Q})
\end{aligned}
$$

Let us draw the circuit that this sim transformed functor suggests". Note that the all operator needed is NOR:

This elegant construction is the canonical one for an S-R latch, whet is the most fundanach of memory elemuts.

To see how it works, play out the values on this circuit. \& Make the initial assumption that $S=R=Q=Q$ - that is, Q the memory element is staring the value Q and neither the set nor the reset inputs is being asserted. Withe the assumptions, we can label the values on the circuit:

Notice that $\overline{S+Q}=1$, making $\overline{R+(\overline{S+Q})}=0$, and thus making these values stable. Now consider an attempt to set the memory element by asserting $S=1$:

Critically, when we return to $S=0, Q$ has been changed and will remain as $Q=1$:

We leave it to the reader to explore the effect of asserting $R=1$ b reset the output to $Q=Q$. Also, if you attempt to asset $\triangle B=R=1$, you will see that Q will oscillate, as goikly, as the gate de lass allow, between Q and $\frac{1}{1}$, leaving the result unpredictable and this undefined.
(B) D-latch

The S-R latch successfully "remembers" whether it was most recently set or reset. Howerc, its inputs and outputs -that is, it's interface -is not quite what we sought. Rather than assert ore line to store the value Q, and assert a different live to store the value 1, we had hoped to have a memory element that adopted whichever value a single binary input, D, was carrying at a given moment.
To achier this new interface, we could expand bet t on the soesign of the $S-R$ latch: Specifically, if $D=\otimes$, we want to reset the latch, by having R=1; similarly, it $\frac{D=1}{S_{0}}$, we want to set the memory elemat b, assent $S=1$.

He, This simple design expressed as the following forth table:

D	S	R	Q
Φ	Q	1	Q
1	1	Q	1

D Q

The fundamental problem with our design is that thar is state in which wither S nor R is being assect-1. In our - Under this design, the memory element is alary being adtivay set or reset. Thaws it never "chambers which value was last assured to the memory dement be wise a new vale is continursty being assigned.
To fix this problem, we must recall the memory element interface that be orroraty imusec in Section EE: 2? I. (A):

This interface dds 娄 i cock (c) int. This udetional input species wen the
vervory dement shout a adopt the valve D^{\prime}. Sperfrally dem $C=1$, we consider the fitch to Le open, and $Q=D(\omega$ assoc $)$. thenar, when $L=E$, the Lath is Ged, and Q exams untinged from its vile the last monet The cal. We sn see bow C control the rationhip between Q are D vising u tim dagan:

How an we ult our initial bot flawed ayruntation of the $S R$ lath to mucus a lock int? Consider that cite s ok should be ax to if ind inly it ene the lath is open, accepting a new vale from. Duly when be lith is core ($(-\infty)$, $\leq K=Q$, least Q unified. So:

Here, the AND gates allow S or R to be asserted only wan C $=1$, as desired. This design successfully graves us our D -then.
(9) Dflip-then

If we examine our example in Section 2.I.(A) carefully, we may notice a problem with our intend use of these menery emends and Hestructure of our segential logic circuIt. Speifeally notice that $D=\bar{Q}$: that is the stat form the we wary element at the cor of our $1-b i t$ counter is posed through a wot gat in turn is the input to ar we rory element. PT The
problem here is on of timing. Consider what happens whey
t the latch is oread (CA). Assume that, at the first moment af which the lathis open, that $Q=1$. The time required, using silicon gats, for this value to flows ind the Not gate, and emery e as the input $D=Q$ to the memory element is minicule. If the cluck for the memory element does not return to $c=D$ very, rapidly, then that input value will be adopted by the memory element, making $Q=D$. it the latch remains open, this the traversal of $Q=\mathbb{C}$ ind the and through the NoT gate, seHirg $D=1$, again changing $Q=1$ again, will all occur molly
In short, whit the y latch is open, D and $\frac{0}{}$ will will be dificut-in practice impossible 1 to product the
 bet counter using a D-Adich as the memory element would

Therefore, for structures like our bit counter cannot rely on
 tit conner ie is not only a common stwatur, bet the base structure for geneal purpose processing device? ? A A D-ktch is open for the duration defined by CI tai; it is therefore kisom ab
being level triggered, whet the leal so the portion of the timers dy rom when $L=1$ and the Teth is open.
We require a memory element whose latch opening is of a much shorter duration. Specifically it must open and then close again before the news output Q, can change, by flowing through the intermediate circot, D.
To achieve that goal, the problem is less a logreal one, and moor one of structure and timing. The following structure, known as a D-flip-flop, comprises two D-katches:

We see that these two latches are connected in sequence. Moreen, thess clock input is leaf one is the inverse of the other. Specifically ${ }^{\prime}$ if D is the ordinal input, C is the externally provided clock line, Q is the final otto, and $D_{i} / C_{j} / Q_{i}$ are the imps oud apple of internal latch::

$$
\begin{array}{lll}
D_{A}=D & Q=Q_{B} & Q_{A}=D_{B} \\
C_{A}=C & C_{B}=\bar{C} &
\end{array}
$$

Detriming that this structure provides the behavior that we sack requires careful consideration．Let us again consider our 1－bit counter， this trine using the flip－Alop as the memory element．Assume， that，initially，the memory element stores a Q（that is， $Q=Q_{B}=Q$ ．Consequently，$D=D_{1}=1$ ．Finally，assume that we begin considering the sequase of events while $C=Q$ ．

White $C=D, C_{B}=\bar{C}=1$ ，implying that latch B is open？However， $C=C_{A}=Q$ ，implying that latch A is closed．Therefore，since latch， A is closed，then its output rencims benched unchanged，so $Q_{A}=D_{B}=Q$ ．This value＂passes through＂the open latch B，apparition
as $Q=\varnothing$ ． as $Q=\phi$ ．
When C transition form Q to 1 ，latch A opens $\left(C_{A}=1\right)$ just as latch B closes $\left(C_{B}=Q\right)$ ．執 The trite of this sep is essentatio The opening of latch A allows the new rate input value presented on $D=1$ to＂Pass through＂，that latch and reach $Q_{A}=D_{B}=1$ ．However， later B closes before this new value reaches its input DP．Thus，
$Q=Q_{B}$ remains \underline{Q}.
 circuit (tald is, at the 1 -bit canter), $\mathbb{A c m y}$ chames to D white $C=1$ will pas thogh the open ltd A sod thut $D=D_{A}=Q_{A}=D_{R}$. However, the closed latch B witl contine to perent any chages to Q.
The critical nomet for the flip-flop cuors dea \leq trasitions form 1 to Q. Sperifairy latuh d does. Conapently, +at lodeve value is issigued to D at the monent $d e t$ Lath A closes is the vale that haten A will cont fom that
 oper, to 恠 $Q_{B}=D Q_{A}=\sum_{5}=Q_{B}=Q$, It, sap, the
 $1 \mathrm{~L}+3$ atere the value of D at the vorent t'et C trantive from 1 to Q is the olve vice the the top-top alopty ontl the clok Gyer m-uno and C trom itions trom 1 to \pm.

This movert of the trmistron froi $C=1$ to $C Q$ is kimon ar the frime cak edee. Litrens, z the trustion fum $C=Q$ to $C-I n$ is callec the sising lak edge. De say the D-lateles at leel tapered - thet it a dopts new anes drem The tome thet C has a leet valcio limover onstrution, \mathscr{G}

 avales b cothe. In ar anstivetion is moment is or the
falling ede, us \subseteq transitions from \perp to 区, which we will write as $\frac{\mathrm{Cl}}{}$. T By examining our timing diagrams, we see that the duration of the dock edges is mun smaller then the duration of the leaks. Thus, flpptlops are open to new iulus for a very stat duration, addressing our problem with the l-bit canker Lase by having a memory elen't open and lox again betre the new memory element's new opt valuer can affect its inge value.
Because the that center is theimost singe example of an essential strata knew is a sequential logic circuit, because the so of CPO are la li complex squetiod loge arcuits, we will heretofore assume that any nevory élewent is a Dflip-tlop.

Now that we are able to store a 1-bit value, we must consider how to group those 1 -bit memory elements together so that we can store K-bit values. However, for many one k bit value. Luckily, doing so requires no logic, and no explicit connections between memory elements.

To store k bits of date a k-bit value g we need only to store each of the k bits in its own l-bit memory element. Such a collection of K-bit memory elements to she
a K-bit value is known as a register. Although k cun take on any value, it is + ghtaly a powertot? Moreove, beate ofiv, 8 责the number of bits in byte, used to store a single characier of texto ceserf as 32-

To make a rejister behare as a sive devine, ther is are it must be ade to aopt a Ekabots of a $\mathbb{E}-\mathrm{bit}$ vale at the sere morent. Thos, all of the Mbit menery elemat, that combox a revits mat- sha. clok/lime. Thet is, a litbit rejster would loa the followig intral stieeture:

AnfA 4 bit inpt vale $-D=\left(D_{3}, B_{1} D_{2}, D_{1}, D_{2}\right)$ is apted in io the tour flytop $\left(f_{3}, f_{2}, f_{1}, f_{0}\right)$ when the dack C qule (tumsitrons from Q to I and $b a k$ to A G_{Gen}), Ove \triangle is Ged into the egiste, its ale at t_{1} mount that the lak's
tally edf beones the output wale $Q=\left(Q_{3}, O_{2}, O_{1}, Q_{0}\right)$.
Now thet we ore vine nutfut vales, we will deerema any lie in a rercuit de am with the nombor of bas it repeemts. Froxupl we cin reduw the ane tbit

Here, we condense the for wires carrying the values of D and $\frac{Q}{}$ to single
lines mated with a 4 to indicate the witt of the value. We also encapsulate the four 1-bit flop-flops in a single box labeled 4-bit reg, since we now know its inner structure.
(c) Aldressible memory

Interesting computations require the storage, in memory elements, of not just one k-bit value, but many of them. We would like a structure that allows a circuit to access any one of $m k$-bit resisters. That is with a given K-bit value, we want the ability to store it in an tate the register, chosen from m of them of our choice. Likewise, given those m registers, each storing and emitting ı 1 bit values, we want a circuit that allows us to select oven of those registers and its value.
We are describing addresible memory; a collection of registers where each is assigned a unique number a memory address by which it can be selected for reading (using its currently stored value) or for writing (assign it a new value).
To explore the structios necessary to create this type of accessible memory, we will assume for illustrative purposes, that we went to stare 2-bit vales, Moreover, we will assume 委 2, we have
four 2-bit registers whose access we want controlled by our addressing scheme. Thus, we assign unique idatifers to each register, \mathbb{Q} through 3 . Furthermore, we assume that there is a single 2 -bit input value E, and a single 2-bit output value \& for the entire addrssible memory structure. Finally, there will be a z-bit address input A that will select ore of the four registers from which to read or write.
 circuit that will select allow us to select the ont of the four registers. To do so, we will initially simplify or problem by assuming that we are using not 2 -bit registers, but rather 1 -bit registers. Once we have established a structure for selecting the output of one at of four I bat registers, then we will expand the structure to hand our original 2-bit registers.
The cental tool in building this "selective reader" circuit is the AND gate. More spectifical! we combine the bits of A Cor their negation) along, with the output Q_{i} of regt ere register i in a way that the orput' of the Ant gate is 1 if and only if $Q_{i}=1$ and $A=i$. We can then inclosic - OR the outputs of these And gater - one per register A. Since A selects only one register, then exactly om of the ANO gates cam emit a 1 , this effecting the final, dis join output.
The structure' looks like: this...

This structure, Kaon as a multiplex, selects one Q_{3}, Q_{2}, Q_{1}, or Q_{0} to become the output Q. The address $A=\left(A_{1}, A_{Q}\right)$ selects which of the Q such that $Q_{A}=Q$. Thus, by presenting as A the number of the desiral registo, the value store in that register is emitted as the output of the multiplexer, Q.
How do we expand this struture to select 2 -bit values? Assume that each register stores two bits, and thus that each Q_{i} is a Z -bit value $\left(Q_{i 1}, Q_{i \phi}\right)$, For the multiplexer to work, we must replicate the multiplexer structure on a per-bit basis. That is, we need a multiplexer for the more significant $Q_{i 1}$ bits, and then we need a second multiplexer for the less $\frac{Q_{11}}{\text { significant }}$ Qua bits. So, assume a high-level represatation of the multiplexeroas like so:

Here, the four D_{i} inputs are 1-bit values; S is a 2 -bit value, identical to the 2-bit A input is shown above; end Z is the 1 -bit atput. The internal structure is identical to what is shown above as the multiplexer component of readable memory.
Given this hightevel representation of a multiplexer, we can stroture a Z-bit readable, addressible memory like so:

That is, the multiplexer structure is replicated for col of the K bits when selecting k-bit values, where each 1 bit multiplexer takes inputs from each of the m k-bit rat valves, specifically
the group of m bits of the same significance within those m values. The peso outputs from each 1 bit max can be joined to construct the single K-bite selected value.

WRITING TO ADDRESSIBLE MEMORY: To iurite a new z-bit value into one of the four a vailabile registers, we begin with a few critical obsermetons:

[^0]: ${ }^{1}$ If the source of these formulae is a mystery, see Section 2.6.3, which presents a standardized approach for converting truth tables to logic functions.

[^1]: ${ }^{2}$ That is, electrically conductive under some circumstances, but non-conductive under others.

[^2]: ${ }^{3}$ Try constructing a truth table that evaluates all three functions to convince yourself of their semantic equivalence.

[^3]: ${ }^{4}$ Although you can likely imagine a simpler function that this DNF form, note that your ability to do so stems from the inherent smallness and simplicity of any 2-input function. Suspend your intuitions about simpler functions for the purpose of this example; later examples will be more difficult, where you not immediately identify a simpler form.

