
CS 16 — Fall 2009 — Mid-term exam

This is a closed-book, closed-note exam. Answer all of the questions clearly, completely,
and concisely. You have 50 minutes, so be sure to use your time wisely. All work should
be written in your blue book. Note that for all of these questions, you may use high-level
structures (e.g., adders, multiplexers, etc.) where appropriate. If in doubt about whether
using a particular component is allowed, ask me.

1. (20 points) Use a Karnaugh map to simplify the boolean function described by the truth
table below. Draw your rectangles clearly and express your result as a boolean
algebraic equation—do not draw a circuit.

A B C D Y
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

1



Answer: Below is the Karnaugh map for this function, with rectangles identifying
terms that can be simplified:

The rectangles simplify to the following conjunctive terms:

α = B D

β = C D

γ = ABD

Finally, the final, simplified function is formed by disjoining those conjunctive terms:

Y = B D + C D + ABD

Discussion: The results for this problem were, overall, quite good. The common
mistakes were the ones that you would expect. Some forgot the proper ordering of the
row and column labels, where each must have one term in common with its adjacent
rows/columns. Many committed transcription errors, simply placing the output values
in the wrong locations on the map. The most common error was to fail to observe the
four-corners case for α.

2



2. (20 points) Draw a 4-bit multiplier that is combinational (in contrast to the sequential
multiplier from Lab 4).

Answer: The following diagram shows a circuit that will multiply two 4-bit numbers
combinationally:

Specifically, this circuit computes a × b = Σ, where each is decomposed into the bits
a = (a3, a2, a1, a0), b = (b3, b2, b1, b0), and Σ = (Σ7,Σ6, . . . ,Σ0).

3



Discussion: This problem won the award for the greatest variety of attempted solu-
tions. Some failed catastrophically, providing a circuit with no meaningful structure or
replicating the sequential multiplier from the lab.1 Others indicated a basic intuition
about the structure of such a multiplier, but failed to get the details right, mangling
the handling of carried values into more significant digit positions.
Most interestingly, many of you presented a solution based on a collection of 1-bit half-
and full-adders. This solution required a complex cascade of carry values, and when
I first encountered it, I admit that I thought it was unlikely to work. However, after
working through it, I could see how it worked correctly. Some presented it with flaws,
but many got the details right and earned full credit.
The solution presented above was also one that many attempted or approximated.
Using higher-level, 4-bit adders makes the problem of handling carry values simpler,
and maps more cleanly onto the addition steps performed in the sequential multiplier,
which itself is modeled after the paper-and-pencil form of multiplication.

1Those who provided such answers have little excuse. When we developed the sequential multiplier, I stated,
explicitly, that a combinational multiplier was a certain exam question. You had time to contemplate the
question and develop an answer, even in collaboration with others in the class.

4



3. (20 points) For Labs 2 and 3, you created a 4-bit counter that could count from 0 to
15 and wrap around 0 again. In doing so, you found that there was a regular pattern
to the logic for each bit that you added to the counter. With this pattern, you could
easily define the Boolean functions for a k-bit counter, for any tractable integer value
of k.
Now, consider creating a reverse counter. For example, for a 4-bit reverse counter, it
should count from 15 down to 0 and wrap around to 15 again. Of course, some of you
tackled this problem as the second part of Lab 3. However, many of those who did so
simply inverted the bits of the output of their forwards counter—a clever trick, but of
no help here.
Find the pattern to the Boolean logic functions for a k-bit reverse counter.
That is, write the logic functions for a reverse counter up to 4 bits. Simplify them so
that you can express the form of the (k− 1)st bit of a k-bit counter. (For example, for
a 10-bit counter, what is the logic function for the 9th, most significant bit, recalling
that the least significant bit is the 0th.)

Answer: First, here is the truth table for the current counter state Y = (Y3, Y2, Y1, Y0)
and the next counter state X = (X3, X2, X1, X0):

Y3 Y2 Y1 Y0 X3 X2 X1 X0

0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1
0 0 1 1 0 0 1 0
0 1 0 0 0 0 1 1
0 1 0 1 0 1 0 0
0 1 1 0 0 1 0 1
0 1 1 1 0 1 1 0
1 0 0 0 0 1 1 1
1 0 0 1 1 0 0 0
1 0 1 0 1 0 0 1
1 0 1 1 1 0 1 0
1 1 0 0 1 0 1 1
1 1 0 1 1 1 0 0
1 1 1 0 1 1 0 1
1 1 1 1 1 1 1 0

5



Next, we move through the functions for Xi, moving from less to more significant
digits.

X0 = Y0: This simplification can be obtained with a Karnaugh map.

X1 = Y1 Y0 + Y1Y0

= Y1 ⊕ Y0

X2 = X2 X1 X0 +X2X1X0 +X2X1X0 +X2X1X0

= X2 X1 X0 +X2(X1 +X0)

= X2 (X1 +X0) +X2(X1 +X0)

= X2 ⊕ (X1 +X0)

X3 = X3 X2 X1 X0 +X3(X2 +X1 +X0)

= X3 (X2 +X1 +X0) +X3(X2 +X1 +X0)

= X3 ⊕ (X2 +X1 +X0)

Finally, we generalize the result for an arbitrary bit k:

Yk = Xk ⊕ (Xk−1 +Xk−2 + . . .+X1 +X0)

Discussion: First, it is important to note that there is at least one other, equally
valid simplification:

Yk = Xk ⊕Xk−1 Xk−2 . . . X1 X0

Most who presented this alternate simplification got it exactly correct, which is fortu-
nate because none of them showed their work to reach this simplification.
The most common errors in solving this problem were failures in Boolean algebraic
manipulation. Many used Karnaugh maps as a first step to simplification, but then
reached a dead end with expressions such as X2 = X2 X1 X0 +X2X1 +X2X0. Failure
to apply some of the algebraic rules in an attempt to change the form of the expression
and extract some regularity was pervasive. Although time was short on this exam,
the complete lack of attempted algebraic manipulation suggested that some knew not
where to start with such a problem. More practice may be in order.
A less common, but not utterly infrequent error was the malformation of the truth
table itself. Some provided this table:

6



Y3 Y2 Y1 Y0 X3 X2 X1 X0

0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 0
0 0 1 0 1 1 0 1
0 0 1 1 1 1 0 0
0 1 0 0 1 0 1 1
0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1
1 0 0 1 0 1 1 0
1 0 1 0 0 1 0 1
1 0 1 1 0 1 0 0
1 1 0 0 0 0 1 1
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0

While this table superficially shows X in the reverse order, it does not result in a
counter that counts backwards through the integer sequence. For any given value for
Y , any device that implements this truth table will ping-pong between two values. For
example, if Y = 1101, then X = 0010. At the next clock cycle, Y = 0010, and thus
X = 1101. Essentially, this device would simply invert the bits at every clock tick.
Those who made this mistake strangely continued onward, writing simplified formulae
such as Xk = Yk. What is troubling is that such simplifications did not set off alarm
bells, leading the exam-taker to recognize that something was dramatically wrong.
Such alarm bells should have gone off.

7



4. (20 points) Draw an addressable memory that has 4 addresses and 1 bit
address

and that
has the following properties:

• Read two registers at once: There should be two separate selector inputs Ra

and Rb and two separate selected register outputs Qa and Qb such that two of
the four registers can be read simultaneously. For example, if I want to read both
registers 1 and 3, then I should be able to set Ra = 012 and Rb = 112 and see the
value from register 1 on output Qa and the value of register 3 on Qb.

• Write a register not being read: There should be two inputs for assigning a
new value to a register. Specifically, W is the address of the register that should
adopt a new value, and D is the value to be adopted.

• Simultaneity of reads and writes: The reading of two registers should occur
simulatenously with the write of a register. These operations may be performed
on three different registers, or on the same register(s).

Answer: Here is a circuit that fulfills the register file characteristics described above:

Writing to the register file is structured as always, with a decoding of the clock signal to
the desired register. What is different from the addressable memory that we developed
during class is that there is a dedicated selector input, W , to that decoder. That allows
us to select into which register we wish to write without also simultaneously selecting
a register from which to read.
Meanwhile, the outputs of each register is routed to two multiplexers. Each multiplexer
has its own selector input, Ra and Rb respectively. Thus, these two inputs allow us to
read any choice of two registers to read simulateously.

8



Discussion: The answers to this question were, by and large, good. The primary
challenges for these problem were (a) recalling the structure of an addressable memory,
and (b) separating the addresses used to select different components, thus allowing
reads and writes to be separately selected. With those observations, the modifications
to the in-class addressable memory were modest.
The most common error was introduce some explicit circuitry to handle the simulti-
naeity requirement. However, no such circuitry is necessary. The circuit above can
accept a value to write into one register and read values from two registers, all at the
same time, without any additional components.

9



5. (20 points) The Fibonacci sequence is defined as:

F (n) =

{
n if n < 2

F (n− 1) + F (n− 2) if n ≥ 2

For example, starting at the 0th element, the first 10 values of this sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34.
Design and draw a sequential logic circuit that calculates the nth Fibonacci number.
Since the sequence is infinite, you may assume that your circuit can handle only k-bit
values—that is, for sufficiently large n, F (n) > 2k − 1, and therefore your circuit can
no longer validly compute F (n). The user of this circuit should be able to reset it, and
then clock it n times to obtain F (n). Show sufficient circuitry to demonstrate how the
circuit is initialized, and then how it computes the correct result.

Answer: The following circuit solves this problem:

Specifically, clock cycle 0 is used to load the initial values into the registers, where
regA = 0 and regB = 1. Since F (0) = 0, we can say that regA = F (0), and regB =
F (1). If t is the cycle number, then at any moment, regA = F (t) and regB = F (t+ 1).

Discussion: The errors on this problem came in two flavors: (a) failure to handle
the loading of initial values; and (b) a lack of clue. For those who suffered from (b),
this problem was one in which you either had the insight, or you didn’t. Problem (a)
was a lack of rigor, which for some was clearly exacerbated by the time pressure. In
particular, some simply failed to acknowledge the need to handle the loading of initial
values properly. Others addressed this problem, but erred in the details.

10


