
ADVANCED OPERATING SYSTEMS — PROJECT 2
Filling in the gaps OR A first evaluation of allocating to elastic

applications

1 Overview
Due to the limited time left in the semester, you must choose what your second and final project is
going to be. Specifically, your group will need to choose one of these experiments:

1. An extension of one of the papers we have read: As originally proposed for this assign-
ment, your group may select some experiment that directly extends or modifies experiments
in one of the papers we have discussed. The goal is to select an experiment that was not done
in one of these papers that you wish the researchers had performed and presented. More on
this option in Section 2.

2. An analytic attempt to allocate resources to elastic applications: Given the papers we
read on elastic applications (e.g., CRAMM, compressed caching), we sketched, in class,
an approach to determine the efficacy of allocating resources to such applications such that
overhead is minimized. For this choice, you would carry out that analysis, as more fully
described in Section 3.

3. Something else: Since there is already a great deal of latitude on these projects, and because
we are continuing to read about a number of compelling ideas, you may create your own
project that falls into neither of the two categories above. If you have a different idea of this
kind, you must have it approved, but you should certainly pursue that option if you have
sufficient interest.

2 Extending existing experiments
For this option, you must select a paper that we have read and discussed and then extend or modify
one of its experiments. You are not supposed to design a wholly new experiment, since doing
so is beyond the bounds of our limited time in this course. Rather, by changing relatively small
aspects of existing experiments, and (ideally) obtaining the code and inputs used to perform those
experiments, you can produce some meaningful result within a reasonable time.

As an example, consider one paper that we read, The Memory Fragmentation Problem: Solved?.
This paper presents four ways of measuring fragmentation, and present some results based on those
metrics. You may conceive of another metric that would change the analysis or reveal meaningful
patterns about the allocation behavior of various applications. Here, you could re-create the exper-
iments from that paper, adding your own fragmentation metric to compare to the four presented in
the paper.

The details of how you would go about such an experiment depend on your choice of paper, the
experiment you want to recreate and extend, and the tools and inputs that can be downloaded or
obtained from the original authors. If you choose this option, you must select a paper and be able
to describe the experimental extension or modification that you intend. From there, the details
of what you must implement and how you will perform the experiments must be worked out in
consultation with me. The final result will be a short paper describing the new experiment, what it
revealed, and how it would affect the conclusions of the original paper.

1

https://www.cs.amherst.edu/~sfkaplan/courses/fall-2009/cs39
http://doi.acm.org/10.1145/286860.286864


3 Approximating the efficacy of elastic applications
We discussed, in class, the problem of allocating resources to programs that employ memory man-
agement strategies such as compressed caching and dynamically resized garbage collected heaps—
strategies that cause processes to change their memory referencing behavior in response to the main
memory allocated to them. These elastic applications can trade CPU time for main memory space,
and therefore they make the kernel’s task of allocating those resources more complex.

We sketched a brute-force strategy for using information about the behavior of each process
to perform these allocation in a way that minimizes overhead, which is defined as the fraction
of running time that the process spends waiting for disk accesses and for CPU-based memory
management tasks (such as page compression and decompression, or garbage collection). What is
not clear is that the use of these memory management strategies, and the application of this more
complex resource allocation policy, would improve system performance and provide the gradual
degredation of performance when memory becomes increasingly scarce.

If you select this option, you would create code that would analytically determine, based on sim-
ulation results and approximations, the type of benefit that elastic applications and their allocation
would gain for a system. Moreover, since compressed caching yields a simpler model with which
to work, you would assume that we are apply it to a group of “standard” processes. For inputs, you
would need, for each of a group of applications:

• Reference or miss histograms

• Mean compressibility per page

• Mean compression and decompression time per page

• Mean disk access time

• The non-paging running time (that is, the time to run the process when sufficient uncom-
pressed memory is available to store the entire footprint of the process)

With this information, you should be able to calculate, for each possible allocation size, the CPU
and disk overheads for the given process. Given groupings of these processes—pretending that
they were being executed concurrently—you could then calculate all possible allocations of main
memory space to each process, determinining which allocation would yield the least overhead.
This result could be compared to calculations in which the compressed cache size is fixed at zero,
which is identical to using non-elastic, traditional processes.

A more elaborate version of this experiment could simulate a number of processes at once (by
using their reference traces), maintaining histograms that evolve (and decay) over time, and pe-
riodically allocating main memory to them. Doing so would reveal how much additional gain
is possible by periodic reallocation of resources, rather than the static, single-allocation that the
analysis described above would represent.

4 Tools and details
This section contains a grab-bag of information about the tools, inputs, outputs, formats, and other
implementation details that will be useful to those of you carrying out particular portions of the
project. This section will be expanded as needed throughout the project’s progression. 0G

2



4.1 The database and basic per-application data
In order to calculate the overhead curves for each process, you will be the reference or miss his-
tograms for that application, as well as basic data such as the non-paging running time. These
results have already been computed and recorded in our database, and so you need only know how
to access that information.

Specifically, on the CS departmental servers and workstations, you should connect to the database
named cs39 on rigel, like so:

$ psql -h rigel cs39

This database is owned by the cs39 role within the roles-based user/group system employed by
PostgreSQL. Each of your subgroups (e.g., cs39c) is a role that belongs to the cs39 role; each of
your user accounts is then a role that belongs to your subgroup role. Thus, all of you have full
access to this database and its tables.

Once you have connected to the cs39 database, use the command to list all of the tables within
it:

cs39=# \dt

You will see two tables of particular interest: attributes and lru. To see the field names
for each, use the psql command to describe a specific table. For example:

cs39=# \d attributes

Once you see the field names, you can see how to form a query that will obtain the information
you need. Again, for example, to obtain the non-paging running time of the trace cc1, you can
enter the query:

cs39=# select non_paging_runtime from attributes
where trace_name = ’cc1’;

These two tables should provide the basic inputs needed to calculate the overhead curves. More-
over, any new tables that you produce for this project should be created within the cs39
database so that all other members of the class can access such tables.

This assignment is due on Friday, 2009-December-04, 9:00 am

3

http://www.postgresql.org/dpcs/8.3/interactive/user-manag.html

	Overview
	Extending existing experiments
	Approximating the efficacy of elastic applications
	Tools and details
	The database and basic per-application data


