
SYSTEMS II — PROJECT 1
Introducing a new ISA

1 The AMHCS ISA
This ISA with which we will be working is good for simulation and relatively easy to program,
but also unrealistic in many ways. It therefore makes a good basis for the kinds of projects we will
pursue in this course.

1.1 Basic concepts
There are a few key, high-level elements of this ISA that merit specification:

• Word size: This ISA uses 16-bit/2-byte words. The arithmetic/logic sources are 16-bit val-
ues, and all main memory addresses are likewise 16-bits each. Consequently, the maximum
addressible memory is 216 bytes = 64 KB.

• Instruction size: Each instruction for this ISA is 64-bits/8-bytes/4-words. The instructions
are uncommonly large to make programming in this ISA easier. Specifically, each of the
operand spaces is a word, allowing a programmer to specify full immediate constants or full
main memory addresses.

• No named registers: There are no addressible registers in this ISA, leaving only main
memory for storage. Source and destination values are all drawn either from immediate
values within the instruction or from main memory itself.

• Endianness: This ISA is big-endian. That is, the most significant bit, labelled bit number
15, is the left-most one, while the least significant bit, labelled number 0, is the right-most.

• Direct vs. indirect operands: Each operand can be direct or indirect. That is, each word-
sized operand value may be a direct representation of the value that should be used by the
instruction, or it may be an indirect reference to a main memory location that contains the
value that should be used. For example, on an arithmetic instruction (e.g., ADD), the two
input values are provided by the operands source A and source B. Each operand may be
direct or indirect. If one is direct, then the operand value itself is provided as an input to
the arithmetic operation; if it is indirect, the operand value is main memory address whose
contents provides an input.

1.2 Machine code format
Each machine instruction, which is 64-bits in length, has the following format:

• [63 - 56] Opcode: An 8-bit value that specifies the operation that the CPU should per-
form. See Section 1.3 for a complete list of opcodes.

• [55 - 48] Operand flags: A collection of 8 boolean values that specify how the operand
values should be interpreted. Specifically:

1

– [55 - 52] Unused: These flags are unused and reserved for future purposes.

– [51] Direct source B: Set is the operand source B is a direct value; unset if it is an
indirect value.

– [50] Direct source A: Set is the operand source A is a direct value; unset if it is an
indirect value.

– [49] Direct destination: Set is the operand destination is a direct value; unset if it
is an indirect value.

– [48] PC-relative target: Set if the operand destination is a PC-relative target, unset
if it is an absolute target.

• [47 - 0] Operands: A collection of 3 operands that specify input and output values and
addresses. Specifically:

– [47 - 32] Destination: For instructions that produce a result value, the address at
which that result should be stored. If this value is direct, then this operand is used as
the main memory location at which the result is stored; if the value is indirect, then
the value contained at the memory location specified by the operand is used as the
main memory location at which to store the result—the operand specifies a location
that contains the destination address.

– [31 - 16] Source value A: For instructions that require at least one input value,
the first such value. If direct, the operand is the input value; if indirect, the operand
specifies the main memory location that contains the input value.

– [15 - 0] Source value B: For instructions that require two input values, the second
such value. If direct, the operand is the input value; if indirect, the operand specifies
the main memory location that contains the input value.

16 1531 0

opcode unused dsB dsA dd rt destination

source Bsource A

PC relative target (source A)

Direct destination

Direct source A

Direct source B

47555663 324849505152

Figure 1: The layout of each 64-bit machine-code instruction.

1.3 Instruction list
The following is a list of the instructions that the AMHCS ISA provides, broken down into cate-
gories.

2

1.3.1 The empty instruction

This special category of instruction has only one entry, and it is notable in that it performs no work.

• 00: NOOP

This instruction ignores all three operands. It performs no computation and modifies no
state.

1.3.2 Arithmetic/logic instructions

These instructions all accept one or two source inputs, perform an arithmetic or logic manipulation,
and produce a result to be stored.

• 0x01: NOT [destination] [source A]

Take the value specified by source A and invert each of its bits, storing the result at the
destination.

• 0x02: AND [destination] [source A] [source B]

Perform the bitwise logical and of the values provided by source A and source B, storing the
result at the destination.

• 0x03: OR [destination] [source A] [source B]

Perform the bitwise logical inclusive or of the values provided by source A and source B,
storing the result at the destination.

• 0x04: XOR [destination] [source A] [source B]

Perform the bitwise logical exclusive or of the values provided by source A and source B,
storing the result at the destination.

• 0x05: ADD [destination] [source A] [source B]

Perform the arithmetic addition of the values provided by source A and source B, storing
the result at the destination.

• 0x06: SUB [destination] [source A] [source B]

Perform the arithmetic subtraction of the values provided by source A and source B (sub-
tracting B from A), storing the result at the destination.

• 0x07: MUL [destination] [source A] [source B]

Perform the arithmetic multiplication of the values provided by source A and source B,
storing the 32-bit, double-word result at the destination.

• 0x08: DIV [destination] [source A] [source B]

Perform the arithmetic division of the values provided by source A and source B (dividing A
by B), storing the 32-bit, double-word result at the destination.

3

• 0x09: SHFTL [destination] [source A] [source B]

Shift the bits of the source A value to the left (from less to more significant) by the number of
bits specified by source B, storing the result at the destination. 0-valued bits will be inserted
into the less significant positions.

• 0x0A: SHFTR [destination] [source A] [source B]

Shift the bits of the source A value to the right (from more to less significant) by the number
of bits specified by source B, storing the result at the destination. 0-valued bits will be
inserted into the more significant positions.

1.3.3 Unconditional branching instructions

Unconditional branching instruction alter the program counter without testing or comparing any
state.

• 0x0B: JUMP [destination]

Set the program counter to the target given in the destination. If the destination is relative,
then the value given in the operand is an offset from the current PC, and thus is added to it;
if the destination is absolute, then the value specified in the operand is copied into the PC.

• 0x0C: CALL [destination] [source A]

Like the JUMP instruction, set the program counter to the target given in the destination,
whether relative or absolute. Additionally, store the PC + 2—the address of the instruction
that follows the CALL—at the address specified (directly or indirectly) by source A.

1.3.4 Conditional branching instructions

Unlike unconditional branching instructions, these alter the program counter only if the particular
test of existing state provides a true result.

• 0x0D: BEQ [destination] [source A] [source B]

Compare the values specified by source A and source B for equality. If this comparison
yields a true result, then set the program counter to the target specified by the destination.

• 0x0E: BNEQ [destination] [source A] [source B]

Compare the values specified by source A and source B for inequality. If this comparison
yields a true result, then set the program counter to the target specified by the destination.

• 0x0F: BGT [destination] [source A] [source B]

Compare the values specified by source A and source B. If A is greater than B, then set the
program counter to the target specified by the destination.

• 0x10: BGTE [destination] [source A] [source B]

Compare the values specified by source A and source B. If A is greater than or equal to B,
then set the program counter to the target specified by the destination.

4

• 0x11: BLT [destination] [source A] [source B]

Compare the values specified by source A and source B. If A is less than B, then set the
program counter to the target specified by the destination.

• 0x12: BLTE [destination] [source A] [source B]

Compare the values specified by source A and source B. If A is less than or equal to B,
then set the program counter to the target specified by the destination.

2 Obtaining the tools
Before we examine the assembler and simulator, begin by obtain the source code and compiling it.
Specifically, follow these steps:

1. Login to one of the CS department systems. Either login to a workstation in Seeley Mudd
007, or connect via ssh to castor.cs.amherst.edu. If you are unfamiliar with ssh,
it is available for Windows, Mac, and Linux machines, so contact me for more information
on how to install and use it on your machine.

2. Be sure that you have a shell or terminal window at which you can type commands.

3. At the shell prompt, create a directory for your work for this class and then change into that
directory:

$ mkdir cs26
$ cd cs26

4. Now make a directory for this project and change into it:

$ mkdir project-1
$ cd project-1

5. Obtain the source code from my directory. When you enter this command, you should see
a list of files and directories that are created at the source code is copied into your current
directory:

$ tar -xzvpf ˜sfkaplan/public/cs26/vp-project-1-v3.tar.gz

6. Change into the newly created directory for the assembler and compile the code there:

$ cd assembler
$ javac *.java

5

7. Change into the directory for the system simulator and compile that code as well:

$ cd ../system
$ javac *.java

You now have the completed tools. Feel free to examine and modify (if you choose) the source
code that you find in the .java files.

3 The AMHCS assembler
Since writing in machine code is unpleasant, there is an assembler for this ISA. Please note that
this assembler has been tested, but it has not been thoroughly used. It likely contains bugs. More
importantly, although I have made efforts to provide a useful and usable assembler, it is likely to
provide error messages that are difficult to decipher when your assembly code is malformed. If you
find bugs or poor error messages, please send me the assembly code that produces the undesirable
result so that I may improve the assembler.

Below is a description of the assembly code syntax, as well as instructions on how to use the
assembler and examine its output.

3.1 Assembly code syntax
Most likely, the best way to absorb the syntax used for writing AmhCS assembly programs is by
example. There is a small example that does not show all features of this syntax, but it does get
you started. To see it, assuming that you’ve begun with the instructions above:

$ cd ˜/cs26/project-1/assembler
$ emacs add-two-numbers.asm &

You should see the following file contents:

01: ;;; Add two integers.
02:
03: .Code
04:
05: ;; Store two integers in main memory locations.
06: OR 0x200 0 5
07: OR 0x202 0 -3
08:
09: ;; Add the two integers, using an indirect destination.
10: OR 0x300 0x204 0
11: ADD @0x300 @0x200 @0x202 ; Indirect sources, too.

6

There are a number of critical features in this example worthy of mention:

• Comments: A semicolon (;) marks the beginning of a comment; any text that follows a
semicolon is ignored by the assembler. The use of additional semi-colons are part of an
assembly convention employed by Emacs: 3 semicolons (line 01) for comments that begin
at the start of the line of text; 2 semicolons (line 05 and 09) for comments that begin tabbed
to the depth of an opcode; and 1 semicolon (line 11) for comments that follow an actual line
of assembly code.

• Mode markers: Line 03 sets the assembly mode. A mode marker is always on a line of
its own, and always begins with a period (.). A more thorough description of the modes is
provided in Section 3.1.1. In this specific case, the Codemode is one in which the assembler
expected to process a sequence of instructions. Therefore, this particular mode marker must
appear before any instructions in your assembly programs.

• Operands values: First, notice that the operand values are sometimes decimal, sometimes
hexidecimal. See Section 3.1.2 for more on specifying word-sized values in different ways.
Additionally, notice that each operand may be direct or indirect. See Section 1.1 for a clear
definition of the difference between those two, as well as Section 3.1.2 for more on how to
specify the direct/indirect attribute for each operand.

3.1.1 Mode change markers

There are four assembly modes:

1. Preamble: The assembler begins in this mode, processing only comments while waiting for
a mode change to specify another mode.

2. Code: The primary mode that you will use, in which you can list the sequence of instructions
that compose a program. In this mode, comments, intrustions, and labels on instructions are
recognized.

3. Numeric: In this mode, you can specify a sequence of literal integer values. You may
specify one or more labels, thereby marking the address of a constant. Each sequence of
word-sized values can be of any length, and may be expressed in any of the forms show in
Section 3.1.2. For example:

.Numeric
0 0b10110001 0xe39a

L5: -12

4. Text: Specify a literal sequence of byte values, where each byte is provided as an ASCII
character. Labels can be provided to specify where a string begins. For example:

.Text
MSG: "The quick brown fox jumps over the dazy log (spoonerism intentional).\n"

7

3.1.2 Word values

In any place where word-sized values are expected, the assembler allows three methods for speci-
fying these 16-bit values:

• Decimal: With no prefix, a number in the range [−32, 768, 32, 767] (the minimum and max-
imum values for two’s complement). For this form, numbers use the usual digits 0 to 9, with
an optional negative designation (with a leading −), and no other charcaters (e.g., commas).

• Hexidecimal: With the prefix 0x, any 16-bit value. Since each each hexidecimal digit (0 to
9, A to F) corresponds to four bits, then any sequence of up to four such digits will compose
a 16-bit value.

• Binary: With the prefix 0b, any 16-bit value. Using only the digits 0 and 1, a sequence of
up to 16 such digits.

3.1.3 Labels and branch targets

Any instruction, numeric constant, or text constant (string) may be prefixed with a label—a sym-
bolic name that represents the address at which that isntruction or constant will be loaded in mem-
ory. The label itself preceeds an instruction or constant, is composed of some unbroken sequence
of characters, begins with a letter, and is followed by a colon (’:’). A label may or may not be
on the same line as the instruction or constant to which it corresponds. For example, the following
are correct label definitions:

.Code
L1: MUL 0x20f4 25 @0x339c
L2: ; How about a comment? Blah blah.

OR 0x1128 0 -1

.Numeric
array3: 0xffef 0x2322

A defined label may be used for any operand. The assembler will translate that label into a word-
sized memory address. By default, that memory address is the literal, complete address at which
the labeled instruction or constant will be loaded; alternatively, the use of the label may be prefixed
by the plus sign (’+’), indicating that the assembler should treat the operand as a relative offset
from the PC. For example:

JUMP L2
CALL +fib @0xff00
ADD 0x500 1 array3

Warning: Using labels for branch targets currently works correctly, but using them for arbitrary,
non-branch-target operands, as in the ADD example above, does not yet work. That is a feature
that I will add to the assembler soon.

8

3.2 Running the assembler
The assembler assumes that your assembly code is written in a file whose suffix is .asm, and
that it will create a machine code file with the suffix .vmx. So, for example, the sample pro-
gram provided with the assembler is named add-two-numbers. Thus, it’s assembly code is in the
file add-two-numbers.asm, and when it is assembled, its machine code will be in the file
add-two-numbers.vmx.

Invoking the assembler is a simple matter. Here, use it to assemble the simple program provided
with the assembler and system:

$ java Assembler add-two-numbers

That is, the assembler needs only the program name, assuming the assembly file suffix, and
creating the output file with the machine code suffix.

Critically, the assembler attempts to provide meaningful error messages for syntactically incor-
rect assembly code. However, it will only provide a message for the first error that it encounters,
and it will then abort assembly. A correctly formed assembly program will be assembled without
any error messages—in other words, no news is good news.

3.3 Examing the machine code
Once a machine code file has been generated, you can use Emacs to examine its binary contents.
For example, open the machine code file that you just created:

$ emacs add-two-numbers.vmx &

What you will see is not really human readable. What you want to see is not the ASCII (text)
characters to which the byte values correspond, but rather the actual binary values that make up
each instruction. To do that, type into Emacs, remembering that M-x means alt-x:

M-x hexl-mode

This command will change the display, showing you, with two-digit hexidecimal values for each
byte, the underlying binary values in the file. Thus, given the machine code layout described in
Section 1.2, you should be able to see the three instructions that make up the add-two-numbers
program.

4 The AMHCS simulator
The system directory contains a complete system simulator, focused on a CPU simulator that im-
plements the AMHCS ISA. Eventually, it will also simulate a hard disk and a display; perhaps
later, other devices will also be added. Currently, this software simulates a CPU attached to a
memory bus that is connected to a BIOS and a main memory. The BIOS is a simulated ROM
whose contents are taken from a user-supplied file. The main memory is a simulated RAM.

9

4.1 Starting the simulator
To run the simulator, first change into its directory. Assuming that you’ve been following the
instructions above:

$ cd ˜/cs26/project-1/assembler

To invoke the simulator, you need to provide two pieces of information:

1. Main memory size: You must indicate, as a number of bytes, the size of the RAM that
this simulated system will have. For our purposes, a small, 1 KB memory will be plenty. I
commonly specify 4 KB, just to be sure that I have more than enough. In later projects, we
may possibly need a larger value.

2. BIOS image pathname: The name of a file that contains the binary image of a BIOS.
Specifically, this file should contain executable machine code, since its contents will be the
first set of instructions that the CPU will attempt to execute.

Note that, until we’ve implemented an operating system that we can boot, we use whatever
program we want to run as the BIOS, thus running it immediately and directly on our CPU. For
example, to run add-two-numbers, invoke the simulator like so:

$ cp ../assembler/add-two-numbers.vmx .
$ java VirtualSystem 4096 add-two-numbers.vmx

The simulator will load and present a prompt:

[pc = 0x0000]:

This prompt always shows the current value of the program counter (pc), which is initialized
to address 0. At this prompt, you can examine or change any of the system’s state—specifically,
any memory location, or any CPU state register. You can also control progression of the CPU’s
execution. To see the list of valid commands, use the help command:

[pc = 0x0000]: help
Commands:

help
step <number of steps>
peek <hexidecimal memory address>
poke <hexidecimal memory address> <word value>
showregister <register name [pc|tbr|base|limit|ip|debug]>
setregister <register name [pc|tbr|base|limit|ip|debug]> <word value>
showflag <flag name [supervisor|vmem]> <flag value [true|false]>
setflag <flag name [supervisor|vmem]> <flag value [true|false]
exit

10

4.2 Setting the debugging level
There are a number of CPU state values—that is, logical registers in the CPU that control how
the CPU behaves. A number of these—tbr, base, limit, ip, supervisor, and vmem—we
will ignore for now. Later, when we attempt to implement an operating system, we will need to
manipulate those values and flags.

The one value that is worth manipulating for this project is debug, which controls the level of
debugging output that the simulator will emit. By setting this register to 1, we will induce the
simulator to provide a good deal of useful information:

[pc = 0x0000] setregister debug 1

4.3 Manipulating main memory
The peek and poke commands allow you to read and write the contents of main memory. You
can examine, one word at a time, the four-word instruction to which the PC refers:

[pc = 0x0000]: peek 0
@0x0000 = 0x030e
[pc = 0x0000]: peek 1
@0x0001 = 0x0e02
[pc = 0x0000]: peek 2
@0x0002 = 0x0200
[pc = 0x0000]: peek 3
@0x0003 = 0x0000

If you want, you may also change any word of memory. However, that should be an unusual
operation to perform. For example, you may discover that a program has a bug, and that you
can fix the bug by modifying an instruction in-memory, while the program is running. More
likely, though, you’ll want to stop the program, fix the bug, assemble the correction, and re-run the
program.

4.4 Stepping through instructions
You may instruct the simulator to perform any number of instructions before stopping to present
the prompt again. You can execute a single instructions like so:

[pc = 0x0000]: step 1
DEBUG [0]: [@0x0000] 0x 030e 0200 0000 0005:

OR 0x0200 0x0000 0x0005
[pc = 0x0008]:

11

Here, the CPU executes one instruction. The CPU, through debugging output, shows both the
machine code instruction and its disassembly. It executes the instruction and advances the program
counter to the next instruction. You can use the peek command, after this instruction, to see that
add 0x0200 contains the value 0x0005:

[pc = 0x0008]: peek 0200
@0x0200 = 0x0005

You can reset the program counter and execute all three instructions of the program like so:

[pc = 0x0008]: setregister pc 0
pc = 0x0000
[pc = 0x0000]: step 4
DEBUG [0]: [@0x0000] 0x 030e 0200 0000 0005:

OR 0x0200 0x0000 0x0005
DEBUG [0]: [@0x0008] 0x 030e 0202 0000 fffd:

OR 0x0202 0x0000 0xfffd
DEBUG [0]: [@0x0010] 0x 030e 0300 0204 0000:

OR 0x0300 0x0204 0x0000
DEBUG [0]: [@0x0018] 0x 0500 0300 0200 0202:

ADD @0x0300 @0x0200 @0x0202

Notice that if you step beyond the end of the program, the CPU may incur an interrupt. Since
we’ve not installed a trap table with pointers to interrupt handlers, the simulator simply aborts:

[pc = 0x0020]: step 1
ERROR in CPU.preserveCPUState(): Interrupt BUS_ERROR while preserving CPU state

With these commands, you should be able to run and debug your assembled programs. Notice
that there is no means by which to print any output—for that we will need an operating system
and a simulated output device. Instead, your programs should assign, into some pre-determined
location, a result. You should then be able to peek into that memory location to see if the result is
correct.

5 Your assignment
To review basic assembly program structures, and to get familiar with the assembler and the simu-
lator, you must write three small assembly program, assemble them, and run them on the simulator
to test them. Here are the three programs that you should write:

• Conditional: A program that carries out a simple if-then-else structure. Of course, since
there is no user input, I should be able to change the values of the variables to make either
the then branch or the else branch be taken. In Java-like code, it should be the assembly
equivalent of:

12

x = 5;
y = -3;
if (x < y) {

z = x;
} else {

z = y;
}
z = z * 2;

• Loop: Perform a loop that calculates the nth Fibonacci number. That is, assign n into
some location, run a loop that calculates fib(n), and leaves the result in some other location.
Comment your assembly code so that it’s clear which location contains n, and which contains
the result.

• Procedure and procedure call: Place your loop code into a procedure named fib. (You
may also try a recursive procedure, but that’s not necessary here.) Noting the CPU starts
computation on the first instruction in the assembly file, have it place n in some location (as
an argument), and have it CALL the fib procedure. That procedure should copy its result
into some return location, and that return location should negate the result (just to prove that
it received the result). Again, your assembly code should be commented clearly to indicate
at what address n is passed, where the return value of fib is provided, and where the final
result of the program is.

6 How to submit your work
Use the cs26-submit command to turn in your programs, like this:

cs26-submit project-1 conditional.asm loop.asm procedure.asm

This assignment is due at 11:59 pm on Monday, February 9.

13

http://en.wikipedia.org/wiki/Fibonacci_number

	The AmhCS ISA
	Basic concepts
	Machine code format
	Instruction list
	The empty instruction
	Arithmetic/logic instructions
	Unconditional branching instructions
	Conditional branching instructions

	Obtaining the tools
	The AmhCS assembler
	Assembly code syntax
	Mode change markers
	Word values
	Labels and branch targets

	Running the assembler
	Examing the machine code

	The AmhCS simulator
	Starting the simulator
	Setting the debugging level
	Manipulating main memory
	Stepping through instructions

	Your assignment
	How to submit your work

