
SYSTEMS II — PROJECT 3
Building a compiler’s internal representation

1 The goal of this project
Recall, from Project 2, that we created a parser that was really only a verifier—it determined
whether a given text input conformed to a particular grammar or not. For this project, we are going
to expand on that code, creating a true parser that generates an internal representation of the text
parsed.

2 Some updates to the grammar
The grammar that you implemented had a few deficiencies. Below is a new grammar (the whole
thing), but first, here is a list of the key changes to the Project 2 grammar:

• <statement>: A reordering of rules that satisfy this one. In particular, <expression>
now comes last, ensuring that none of the keywords are, by default, taken as identifiers.

• <begin end>: This rule was not explicitly named, but rather appeared in <statement>
directly. It is now separated like the other statement types (e.g., <if then>, <while>).

• <alphanumsym>: This rule replaces <alphanumsym> adding to it the <symbol> rule
(see below) to allow other desirable naming symbols.

• <alphanumsym list>: This rule replaces <alphanumeric list> in the obvious
manner.

• <symbol>: The list of non-alphabetic, non-numeric symbols that can be used for naming.

• <identifier>: Now allows an identifier to begin with a <symbol> as well as an al-
phabetic character, and to contain those symbols in subsequent character positions as part of
<alphanumsym>.

• <hex digit>: Now includes lower case a through f as valid digits for hexidecimal.

Here is the complete grammar:

<program> -> <declaration list>
<declaration list> -> [null | <declaration> <declaration list>]
<declaration> -> [<variable> | <procedure>]
<variable list> -> [null | <variable> <variable list>]
<variable> -> ’var’ <integer> <identifier>
<procedure> -> ’procedure’ <integer> <identifier>

’(’ <variable list> ’)’
’[’ <variable list> ’]’

1

<statement>
<statement list> -> [null | <statement> <statement list>]
<statement> -> [’return’ <expression> |

<if then> |
<if then else> |
<while> |
<begin end> |
<expression>]

<expression list> -> [null | <expression> <expression list>]
<expression> -> [<identifier> |

<integer> |
<procedure call>]

<procedure call> -> ’(’ <identifier> <expression list> ’)’
<if then> -> ’ifthen’ ’(’ <expression> ’)’ <statement>
<if then else> -> ’ifthenelse’ ’(’ <expression> ’)’

<statement> ’otherwise’ <statement>
<while> -> ’while’ ’(’ <expression> ’)’ <statement>
<begin end> -> ’{’ <statement list> ’}’
<identifier> -> [<alphabetic> | <symbol>] <alphanumsym list>
<alphabetic> -> [’a’ | ’b’ | ’c’ | ... | ’z’ |

’A’ | ’B’ | ’C’ | ... | ’Z’]
<alphanumsym list> -> [null | <alphanumsym> <alphanumsym list>]
<alphanumsym> -> [<alphabetic> | <dec digit> | <symbol>]
<symbol> -> [’!’ | ’@’ | ’#’ | ’$’ | ’%’ | ’ˆ’ |

’&’ | ’*’ | ’_’ | ’-’ | ’+’ | ’=’ |
’|’ | ’\’ | ’:’ | ’<’ | ’>’ | ’?’ | ’/’]

<integer> -> [<dec int> | <hex int> | <bin int>]
<dec int> -> [<dec digit> <dec digit list> |

’-’ <dec digit> <dec digit list>]
<dec digit list> -> [null | <dec digit> <dec digit list>]
<dec digit> -> [’0’ | ’1’ | ’2’ | ... | ’9’]
<hex int> -> ’0x’ <hex digit> <hex digit list>
<hex digit list> -> [null | <hex digit> <hex digit list>]
<hex digit> -> [<dec digit> |

’A’ | ’B’ | ... | ’F’ |
’a’ | ’b’ | ... | ’f’]

<bin int> -> ’0b’ <bin digit> <bin digit list>
<bin digit list> -> [null | <bin digit> <bin digit list>]
<bin digit> -> [’0’ | ’1’]

Other updates: There are also some updates to the CharacterStream class. In particular,
the skipWhiteSpace()method now returns a true if one or more whitespace characters were
skipped, and false otherwise, thus allowing the caller to determine whether whitespace occurred
where it should not have or vice versa.

2

3 Internal representation

3.1 Getting the code
I have written a set of Java classes to help you get started with the problem of internally represent-
ing the parsed text in a structured manner. First, to obtain the code for these classes, login to the
CS systems (castor or a workstation in SMudd 007), and do the following:

$ cd cs26
$ tar -xzvpf ˜sfkaplan/public/cs26/project-3.tar.gz
$ cd project-3

3.2 Understanding this code
Notice that the code you just obtained is collection of classes, many of which are related to one
another via inheritance.1 Each of these classes is named and designed such that it corresponds to
some production rule.

Your primary goal in this assignment is to have each production rule return an object that
contains the information parsed by that rule, or, if the parsing failed, return null to indicate
failure. Thus, these methods that implement production rules will no longer return true or
false. Specifically:

• The lowest-level production rules that parse individual characters (e.g., <decimal digit>)
should return a pointer to a Character object. Note that a Character is an object that
contains a char, but since it’s an object, we have the additional capability of returning null
when none of the desired characters are found during parsing.

• Production rules that return sequences of characters (e.g., <bin digit list>) should
return a pointer to a String object. After all, strings are character sequences.

• All higher-level rules should return a pointer to a specially designed object whose purpose
is to store the information read by a particular parsing rule. For example, the code that
I just provided contains a Variable class, where each Variable object contains both
the name of declared variable and its size (that is, the number of bytes associated with that
named space).

If you look in the provided Parser.java file, your will see methods for parsing decimal inte-
gers. Specifically, notice that the methods follow the pattern described above. Similarly, consider
writing methods to parse a variable declaration:

1. Check for the var keyword.

2. Call on the method to parse an integer, getting back a pointer to an Integer object.

3. Call on the method to parse an identifier, getting back a pointer to an Identifier object.
1If you are not familiar with inheritance, please see me, and I can bring you up-to-date with the aspects of this

language feature that you need to know here.

3

4. Create and return a new Variable object, passing its constructor the Integer and Identifier
objects from the previous two steps.

3.3 What you must do
Part 1: First, modify your methods that implement production rules so that they return object
pointers. As described above, many of the methods should return Character, String, or an
object of one of the provided classes. Copy your methods from your old Parser.java file into
this new one, updating your code to create and return these objects. Particularly, start with the
methods that would return one of the objects of classes that I’ve already defined for you.

Part 2: I haven’t written all of those classes. For example, there are no classes whose objects
would contain information about parsed <if then> or <while> statements. You will need
to use existing classes (e.g., <BeginEnd>) as examples, and create new classes to complete the
collection.2

Ultimately, the top-level <program> production rule should return a List<Declaration>
object.3 If you try to print this object, it should recursively call the <toString()> method in
each of the parsed objects, producing a (poorly formatted) representation of what was just parsed.
Later, we will add to these classes so that they output appropriate assembly code—for now, we
only want to see that we’ve parsed and internally represented everything correctly.

4 How to submit your work
Use the cs26-submit command to turn in your programs. From your project-3 directory,
do this to submit all of the classes, including ones written by both you and me:

cs26-submit project-3 *.java

This assignment is due at 11:59 pm on Friday, March 13.

2Again, if you are unsure about inheritance, I can help you with writing these classes.
3And if you don’t know about Java lists, linked lists, or array lists, let me know so that I can show what these are

and how to use them. It’s not too complex, I promise.

4

	The goal of this project
	Some updates to the grammar
	Internal representation
	Getting the code
	Understanding this code
	What you must do

	How to submit your work

