
CS 16 — Fall 2010 — Mid-term exam

This is a closed-book, closed-note exam. Answer all of the questions clearly, completely, and
concisely. You have 50 minutes, so be sure to use your time wisely. All work should be written in
your blue book. If a question’s intent is ambiguous, then make reasonable assumptions that
you can justify, and write them with your answer.

1. Use a Karnaugh map to simplify the following boolean function:

Y = ĀB̄C̄D + ĀBC̄D̄ + ĀBCD̄ +AB̄CD̄ +ABC̄D̄ +ABC̄D +ABCD̄ +ABCD

Draw your rectangles clearly and express your result as a boolean algebraic equation—
do not draw a circuit.
Answer: Below is the Karnaugh map for this function, with rectangles identifying terms
that can be simplified:

A6

Ag

The rectangles simplify to the following conjunctive terms:

α = AB

β = BD̄

γ = ACD̄

δ = ĀB̄C̄D

Finally, the final, simplified function is formed by disjoining those conjunctive terms:

Y = AB +BD̄ +ACD̄ + ĀB̄C̄D

1



Discussion: Transcription errors were somewhat common, leaving people simplifying the
wrong function. What was far more common was failing to see the potential for a second
4-element rectangle. Specifically, everyone found α, but many missed the 2-by-2 rectangle for
β, largely because half of that rectangle was already covered by α. However, failing to treat
it as a 4-element rectangle left the term ĀBD̄, but missing the opportunity to remove Ā from
the term.

2



2. Recall the following feedback function that we developed in class, when first devising a func-
tion capable of “remembering” a value, such that its output Q would be set (Q = 1 when
S = 1), reset (Q = 0 when R = 1), or retain its old value (Q is whatever it was):

Q = R̄S +QR̄S̄

I then claimed that this function was equivalent to a pair of cross-coupled nor gates. Show,
algebraically, that the function above is equivalent to the cross-coupled nor gates.

Answer: Starting from the cross-coupled nor gates, we see that the circuit’s outputs can
be defined (recursively) as:

Q = R+ Q̄

Q̄ = S +Q

By substituting the latter into the former, we get:

Q = R+ (S +Q)

The following sequence of algebraic steps transforms this function into the given one, above:

Q = R̄(S +Q)

Q = R̄(S +Q)

Q = R̄(S +Q(S̄ + S))

(since S̄ + S = 1)
Q = R̄(S +QS̄ +QS)

Q = R̄(S(1 +Q) +QS̄)

Q = R̄(S +QS̄)

Q = R̄S +QR̄S̄

Discussion: There is more than one way to skin this cat, and a number of people came
up with different algebraic sequences to show the equivalence. I gave most of the credit
if you could get far enough to determine that the essential trick is showing that S + Q =
S + QS̄. However, use of truth tables got no credit here, and that was the most common
error/mistake/failing. How much credit you lost depended on how deeply you relied on a
truth table to do the work of showing equivalence.

3



3. Consider representing 4-bit signed integers by using excess-8 notation. For this notation, all
integers are represented by a value that is “in excess” of its true, signed value by 8 positions
on the number line. For example, if you see the binary value 1100, the unsigned integer
interpretation of that value, in decimal, is 12. However, if it is an excess-8 value, then it is
really representing 12 − 8 = 4. Likewise, 0010 = 2 − 8 = −6 in excess-8 notation.
Given this form of signed integer representation, answer the following questions:

(a) What is the range of values that can be represented?

(b) Does additon of two excess-8 values “just work”? If not, do you see how to make it
work?

(c) Are there any (other) drawback that make this notation undesirable?

Answer:

(a) Since the range of unsigned 4-bit integer values is from 0 to 15, then the range for 4-bit
excess-8 values is from 0 − 8 = −8 to 15 − 8 = 7.

(b) Adding two excess-8 values in the same manner as two unsigned integers does not yield
the correct result. For example, consider −4 + 6. In excess-8 notation, these values are
0100(4 − 8 = −4) + 1110(14 − 8 = 6). If we add these two binary values as unsigned
integers, we get the 5-bit result 10010, which predictably represents the unsigned sum
4 + 14 = 18. However, as a 4-bit excess-8 value, the lower 4 bits 0010 represents
2 − 8 = −6, which is incorrect.
The fix, however, is quite simple: Invert the most significant bit of the result. Thus,
in our example, 0010 becomes 1010, which is the unsigned value of 10, or, in excess-8,
10 − 8 = 2—the correct answer!

(c) There are a few meaningful drawbacks to this signed integer represenation: First, non-
negative values begin with a 1 while negative ones begin with a 0, making the repre-
sentation of non-negative values fail to match their unsigned counterparts. Second, as a
result, the important value 0 is not a collection of four bits whose value is 0, but rather
the special pattern 1000. Thus, zero is uniquely represented by one bit-pattern, but it’s
not the most desirable pattern.

Discussion: Most everyone correctly identified the range and observed that adding did not
“just work.” However, many people observed that you need only “add 8” to correct the results
of straightforward addition. This answer, by itself, presents a problem of circularity: To get
addition to work, we need only to perform an extra addition operation. Worse, the suggestion
invariably failed to state that what was needed was to “add an unsigned 8.” Those who went
on to formulate the correct mechanism for obtaining this result—flipping the most significant
bit—got credit; without that observation (or at least some reasoning leading toward that
observation), little or no credit was earned.
The answers for drawbacks were (predictably) all over the map, some earning more credit than
others. Many offered vague complaints about overflow, failing to notice that (a) overflow is a
problem for any fixed-sized numeric representation, signed or unsigned, and that (b) overflow
is actually quite easy to detect in excess-8 addition. (Do you see how?)
Another common and erroneous mistake was asserting that extending this notation to larger
numbers of bits would be difficult or limiting. This observation is false: Any k-bit signed
integer can be represented using excess-2k−1 notation. So, 5-bit values would use excess-16,
6-bit would use excess-32, and so on.

4



Finally, some worried that negating a value would be complex in this representation. However,
interestingly, negating an excess-8 value requires two familiar steps: (a) flip the bits, and (b)
add 1. Sound familiar?

5



4. Provide a complete argument that the nor logic operator is universal. That is, show first
that not, and, and or are sufficient to express any logic function; then show that nor is
sufficient to express all three of those.

Answer: First, we must establish the universality of the trio of operators and/or/not.
To establish that universality, we observe that any logic function can be expressed using a
truth table. For each entry in the truth table for which the output of the function is 1/true,
the corresponding combination of input values can be straightforwardly translated into on
conjunctive term that is then disjoined with the other terms to form a new function in the
disjunctive normal form. Thus, any logic function can be mechanically translated into DNF,
which itself uses only and/or/not operators.
Second, we can establish that nor is sufficient to compute each of the and/or/not operator
trio. Specifically:

x̄ = x+ x

x+ y = x+ y = x+ y + x+ y

xy = xy = x̄+ ȳ = x+ x+ y + y

Thus, with simple algebraic transformations (and one use of DeMorgan’s Law), each of the
trio can be expressed using nothing but nor operations, thus demonstrating its universality.

Discussion: Many successfully completed the second portion of this problem by showing
the algebra involved and, often, the circuitry that would follow. Either was acceptable in
demonstrating the universality of nor. However, many also struggled to show the universality
of and/or/not, simply claiming that this trio was universal by some declaration of being
“fundamental” without justifying the claim nor defining what was fundamental about them.
Others attempted to skip any need to argue for the universality of and/or/not by simply
showing how nor can be used to calculate nand, and thus relying on our work in class to
show that nand is universal. However, this approach ignores that nand was only shown
to be universal given the assumption that and/or/not are also universal. Thus, showing
the equivalence of nand is insufficient, since it still requires an explicit demonstration that
and/or/not are universal.

6



5. Take home problem to be submitted by Thursday at 5:00 pm: Is xor a universal
operator? If so, show it; if not, explain/demonstrate/argue/prove why not.

Answer: It cannot be universal. To express and or or, one must be able to devise functions
whose result for one of the input patterns is different from the other three. (For example,
for and, only two true inputs yield a true output; the other three input combinations yield
false outputs.)
However, xor provides one result for two of its input patterns, and the other result for the
other two. No combination of xor operations—no composition of xor with itself—can alter
this grouping of two-falses-and-two-trues for the final output. Thus, xor can be used to
perform not operations, but no arrangement can yield and or or.

Discussion: Everyone concluded, correctly, that xor is not a universal operator. Many of
you then presented a variety of arguments that were sufficient. Some exhaustively expressed
all of the possible combinations of using xor with the two variables provided as well as the
two possible constants, drawing reasonable conclusions about the impossibility of composing
xor with itself successfully.
There were two prominent errors in justifying the non-universality of this function:

• Some attempted some non-comprehensive recombinations of xor with itself, and when
they could not construct either and or or, they concluded that it couldn’t be done.
Although the conclusion is correct, the cases and arguments shown were insufficient for
drawing that conclusion.

• Many claimed that xor could not be used to perform an inversion (that is, the not
operator). This claim is incorrect: x̄ = x⊕1. This faulty conclusion was most commonly
reached by failing to consider the use of constants as inputs.

7


