
INTRODUCTION TO COMPUTER SCIENCE I
PROJECT 1

Arithmetic and Basic Input/Output

For our first project, you will get familiar with the tools used to write, compile, and execute
programs. You will do so by writing small programs that read numbers that the user types with the
keyboard, performs arithmetic on those numbers, and prints a result to the screen. Along the way,
you may have to do a bit of scurrying about campus. . .

1 Your first Java program: Printing text messages
The following steps will lead you through your first Java program. Here, the goal is to get used to
the tools involved in writing, compiling, executing, and debugging these programs. After you get
this pre-written and simple program working, you will then need to write a program of your own.

1. Login to your workstation: Our lab is full of basic Windows desktop computers. These are
run by our Information Technology department, and you must begin by logging into them
using your college username and password.

2. Login: The computer systems that we will use for our projects are romulus.amherst.edu
or remus.amherst.edu, (heretofore, remus/romulus), which are UNIX (Linux)
systems. To use these systems, you must login to them from your workstation using Xming,
software that allows you to connect graphically to these servers. To do so, follow the Win-
dows Xming instructions that describe how to use this software on the Windows machines in
Seeley Mudd 014. Notice that this page also describes how to install and use Xming on your
own computer if it is a Windows machine as well. If you have a Mac, follow the Mac X11
and ssh instructions.

Once you have logged into remus/romulus, you will be presented with a shell—a text
window with a prompt at which you can type commands to the system. The shell is the place
from which you will direct the system to run the program that allows you to edit your source
code, to perform the compilation of your source code, and to execute your programs.

3. Make a directory: When you first login, you will be working in your home directory—
the UNIX analog of your My Documents folder. Within this directory, you should make a
subdirectory (a folder) for your work for this lab. Specifically, enter the following command
to create and then change into that subdirectory:

$ mkdir project-1
$ cd project-1

4. Get some sample source code: Use the following command to obtain a sample Java source
code file, being careful to include the tilde (˜) before my username and the trailing space
followed by a period (.):

1

https://www.cs.amherst.edu/~sfkaplan/courses/spring-2010/cs11/
https://www.amherst.edu/academiclife/departments/computer_science/computing/windows
https://www.amherst.edu/academiclife/departments/computer_science/computing/windows
https://www.amherst.edu/academiclife/departments/computer_science/computing/mac
https://www.amherst.edu/academiclife/departments/computer_science/computing/mac


$ cp ˜sfkaplan/public/cs11/project-1/Howdy.java .

To ensure that you have copied the file into your project-1 subdirectory, use the follow-
ing command to list the files in the current directory, noting that the character following the
dash (-) is a lowercase letter L, and not the numeral 1:

$ ls -l

You should see an output that looks something like this:

total 4
-rw-r--r-- 1 sfkaplan sfkaplan 235 Jan 28 22:18 Howdy.java

5. Examine and modify the source code: Run Emacs, a programming text editor, to examine
the Howdy.java file. In the following command, be sure to include the trailing ampersand
(&), causing the text editor to run in the background—that is, to run while allowing you to
enter more commands:

$ emacs Howdy.java &

You will see a small program much like the one we wrote on the blackboard in class. In
fact, this program is simpler: it declares no variables and performs no arithmetic. Instead, it
merely prints a message to the screen.

You will easily find that, within the Emacs window, you can move around the source code
with the arrow keys, and change the file simply by typing in a normal fashion. The pull-down
menus allow you to save your file periodically and to exit the program. However, Emacs is
a complex program that is capable of a great deal more. To really start learning how to use
it, you should read this documentation/tutorial on using Emacs.

Once you have gotten somewhat comfortable with your new text editor, use it to add one
more line of text to what is printed on the screen. It doesn’t matter what text you add—just
have the program print something new and unique. Once you are done adding this additional
line of code, be sure to use the save command.

6. Compile: Now that you have changed the source code, you must translate it into a form
that the computer can execute. Leaving your Emacs window open, click over to your shell
window again. In it, use the following command to compile your source code:

$ javac Howdy.java

2

http://en.wikipedia.org/wiki/Text_editor
https://www.amherst.edu/offices/it/help/software/unix/emacs


In this case, no news is good news. That is, if the computer simply presents the shell prompt
to you after you issue this command, then the compilation succeeded. The compiler—
the javac program—will print messages into your shell window only if it was unable to
translate your program.

If you see such an error message, then you must have made some type of mistake in adding
your line of code to print one more line of text. Go back to your Emacs window and see if
you can spot your error. If you can, correct it, save the source code, go back to your shell
window, and issue the compilation command (as above) again. If the error persists, or if you
could not see what your error was in the first place, then ask for help.

7. Execute: Once you have successfully compiled your program, it is time to run it and see
what happens. Go to your shell window and issue this command:

$ java Howdy

Your program should (very quickly) print into your shell window the lines of text that your
source code indicated it should. If you don’t see the text that you expected, then go back to
your source code in your Emacs window, and see if you can spot your error. If you don’t see
the error, then ask for help.

Congratulations! You’ve (partially) written, compiled, and run a Java program! Although the
programs will get more complex, you will continue to use the write, compile, execute sequence
throughout. You can now close your Emacs window since you are done with this program.

2 Your second program: User input and arithmetic
You are now going to write a program that reads a few values that the user of the program types
in, performs a few arithmetic operations on those values, and then prints the results to the screen.
This program will seem almost absurdly arbitrary—and in some sense, it is—but its purpose of
this program will become clear later.

2.1 Getting started
Because this program will do a few new things that we have not yet discussed in class, I am
providing some portions of the program. Much like your Howdy program, you will add the critical,
arithmetic instructions to the program, making it whole. You should begin by obtaining the initial,
partially written program by issuing this command at your shell prompt, again being sure to put
the tilde (˜) and the trailing space and period in proper places as shown here:

$ cp ˜sfkaplan/public/cs11/project-1/StrangeMath.java .

Once again, use Emacs to examine and modify the source code of this program:

$ emacs StrangeMath.java &

3



2.2 Understanding the user input code
You will quickly notice that there are unfamiliar lines within the StrangeMath source code.
Specifically, at and near the top are the lines:

import java.util.Scanner;
[...]

public static Scanner keyboard = new Scanner(System.in);

Once again, I will make like the Wizard of Oz and ask that you not look behind the curtain—at
least, not yet. These are, for the moment, lines that are simply necessary for allowing the user of
your program (usually, you) to type in numbers while the program runs that the program can then
use. To that end, notice the pairs of lines that look something like:

System.out.print("Enter a value for a: ");
int a = keyboard.nextInt();

The first of these two lines does something familiar: it prints a line of text to the window. In this
case, that text is a prompt, asking the user to enter a datum. The second line, however, is less famil-
iar. Declaring an integer variable named a is something we know how to do, and so is assigning a
value into that space. What is new, however, is the expression, keyboard.nextInt(). Simply
put, this command causes the program to wait for the user to type an integer value and press the
return key. When the user does so, the integer value is assigned into the space named a.1

2.3 Your task: Adding the arithmetic
The user must enter three integer values, namely: a; b; and c. It is your task to then compute three
new values, each of which depends on some subset of a, b, and c. Specifically, you must compute
x, y, and z, noting that all of these values are integers, and all computations should be done
with integer arithmetic:

x = b mod a

y =
ac

b
− 6

z =
b

a

Why these wacky arithmetic operations? These will serve as your “magic decoder ring” for the
wild goose chase, below . . . 2

Notice that the final part of the program prints the values of variables x, y, and z to the shell
window. Therefore, the code that you add must declare and assign these variables their correct
values, as described above.

1What happens if the user doesn’t enter an integer? Short answer: Try it and find out! Long answer: The program
will crash—that is, it will abruptly stop running, but not before printing a strange collection of currently indecipherable
(to us) error messages. We will learn how to read such crash messages later.

2Be afraid, be very afraid.

4



2.4 Testing your program
Once you have added the lines of code that perform the strangely needed arithmetic, you should
test that your program works! Specifically, these are three arithmetic operations that you could
perform with pen and paper or, for those so inclined, with a calculator.3 Therefore, you should
dream up a handful of values for a, b, and c. Before running your program, calculate for yourself
what x, y, and z should be if your program is written correctly.

Armed with a few test cases, now run your program:

$ java StrangeMath

When prompted by your program to enter values for a, b, and c, choose any one of your pre-
determined trio of values for those variables. Then examine your programs output. Did it produce
the values for x, y, and z that you expected? If not, then either your program or your test case
contains a error, and you must determine which is at fault and fix it. If the output does match
your expectation, then you have one (more) test case to support your belief that your program is
correct.4 Once your program has passed enough test cases to convince you that it is likely to be
working correctly, then you should move on to . . .

3 The wild goose chase, take I
Have you even been to the gym? Have you noticed, on the walls surrounding the main, old bas-
ketball court (not LeFrak), the pictures of so many alumni who have competed on various teams,
going back over 100 years? Your mission, should you choose to accept it,5 is to find one particu-
lar person in one particular such photograph.6 Moreover, it’s a race, where those who submit
a correct answer sooner get more credit than those who do so later.7

3.1 Finding the inputs
To find this photograph and the person in it, you must find three very important numbers. Finding
them will require a bit of patience, frighteningly little ingenuity, and, one hopes, a sunny disposi-
tion. Here are the clues—none too subtle—for finding those three numbers:

a: This value is the numeric portion of the street address of the Folger Shakespeare Library.
Truly low cunning is required to discover this value. Should you require more than two
minutes for this task, hang your head and avoid eye contact. Bonus point: Why might I have
involved the poor Folger in this fiasco?

3Don’t forget that you’re using integer arithmetic!
4Do not confuse this belief as being proof that your program is correct. Proving that program produces correct

output in all cases is exceedingly difficult, and way outside of the scope of this course.
5I highly recommend that you do accept it.
6No, I am not kidding.
7I’m still not kidding. And don’t freak out about the credit thing. It’s not like you’re going to get terrible grades

for slow but correct solutions to these projects. The race is a small component of the grading. Now get to work.

5



b: In the Olds Mathematics Library/Reading Room,8 there is posted, upon the wall, a collection
of prime numbers. The value you seek is the number of primes listed in this collection.

c: On level 3 of the Merrill Science Center, there are posters, each presenting scientific work
carried out using the slave labor of an undergraduate student who toiled in a lab, utterly
wasting one of the beautiful summers of that student’s youth. Among them you will find
one that addresses the important but not terribly uplifting topic of female college students,
dieting, self-esteem, and body image.9 The value you seek is N , as shown in Table 1 of the
poster—where N is the number of subjects measured for the study.

3.2 Using the outputs
This next step should not surprise you. Go run your StrangeMath program, and enter the values
of a, b, and c that you worked so hard to obtain. From it, you will, of course, obtain values for x,
y, and z. These are the values you need to find the person among the pictures of alumni athletes
in the gym. To whit, follow these steps to find the person in question:

1. Go to the gym.10 Go to the hallway on the north side of the basketball court.11 Then, look at
the north wall of that hallway—that is, with your back to the basketball court itself.

2. Starting from the far left side of this wall, find the xth column of photographs.

3. From the top of that column, find the photograph in the yth row. Note the team and year of
this photograph.

4. Within the photograph, find the middle row of people.

5. From the left side of that row of people, find the zth person. Note the exact name of this
person in the photograph.

Recording your big find: Run, don’t walk, to a computer from which you can login to remus/romulus.
Within your project-1 subdirectory, use Emacs to open a plain text file, like so:

$ emacs final-answer.txt &

Into this file, type the two pieces of information that you noted from alumni photograph: the
team/year of the photograph, and name of the person.12 Save the file and then close your Emacs
window.

8Don’t know where that is? Use The Google, Luke.
9Why on earth did I pick this particular poster? Because I’m on a diet, and it caught my attention. Now bring me

a slice of Antonio’s.
10Duh.
11Don’t know which way is north? Seriously, you can’t figure that out?
12Super-mega-bonus points: Find the two other photographs in that gym in which this same person appears.

6



4 How to submit your work
You will use the cs11-submit command to turn in your work. Specifically, you should submit
your completed Howdy.java, StrangeMath.java, and final-answer.txt files, like
so:

cs11-submit project-1 Howdy.java StrangeMath.java final-answer.txt

This assignment is due on Thursday, February 4, at 11:59 pm

7


	Your first Java program: Printing text messages
	Your second program: User input and arithmetic
	Getting started
	Understanding the user input code
	Your task: Adding the arithmetic
	Testing your program

	The wild goose chase, take I
	Finding the inputs
	Using the outputs

	How to submit your work

