
SYSTEMS II — PROJECT 0
Revision 1 — 2010-Feb-14

Assembly, procedures, and stack management

1 Overview and motivation
For this course, I assume that you have some background with assembly programming. However,
before we delve into more complex tasks, this project will serve as a “warm-up.” Specifically, you
will write an assembly program using the assembler and simulated processor that will serve as the
basis of our projects throughout the semester. The goal is merely to (re)familiarize yourself with
the architecture, assembler, and simulator.

2 The K-SYSTEM ISA
The ISA with which we will be working is good for simulation and relatively easy to program, but
also unrealistic in many ways. It therefore makes a good basis for the kinds of projects we will
pursue in this course.

2.1 Basic concepts
There are a few key, high-level elements of this ISA that merit specification:

• Word size: This ISA uses 32-bit/4-byte words. The arithmetic/logic sources are 16-bit val-
ues, and all main memory addresses are likewise 32-bits each. Consequently, the maximum
addressible memory is 232 bytes = 4 GB.

• Instruction size: Each instruction for this ISA is 128-bits/16-bytes/4-words. The instruc-
tions are uncommonly large to make programming in this ISA easier. Specifically, each of
the operand spaces is a word, allowing a programmer to specify full immediate constants or
full main memory addresses.

• Named registers: There is a small set of named registers—that is, registers that can be
specified as operands. Specifically, some of these 8 registers are intended for prescribed
purposes, while others are for general use.

• Endianness: This ISA is big-endian. That is, the most significant bit, labelled bit number
31, is the left-most one, while the least significant bit, labelled number 0, is the right-most.

• Multiple addressing modes: Each operand can be one of three types:

1. Constant: The operand is itself a value on which an operation should be performed.

2. Direct: The operand is a main memory address, and the value contained at that address
is the one to be used by the instruction.

1

https://www.cs.amherst.edu/~sfkaplan/courses/spring-2010/cs26/

3. Indirect: The operand is a main memory address whose contents are themselves an-
other main memory address. It is the datum located at this second main memory ad-
dress that should be used by the instruction.

2.2 Machine code format
Each machine instruction, which is 128-bits in length, has the following format:

• [127 - 112] Opcode: An 16-bit value that specifies the operation that the CPU should
perform. See Section 2.3 for a complete list of opcodes.

• [111 - 96] Operand flags: Bits that indicate how the operand values should be inter-
preted. Specifically, for each operand, there is a group of 4 bits that specify how a given
operand should be interpreted. If the bits for a given operand begin at bit numner n, then the
four bits that describe how to interpret that operand are:

– [n] Constant: If this bit is 1, then the operand is an immediate constant that should
itself be used by the instruction; if the bit is 0, then the operand is some kind of memory
location.

– [n + 1] Register: If this bit is 1, then the operand is the number of a register in
the register file; if the bit is 0, then the operand is a main memory address. Note that
this flag is relevant only if the operand is a memory location (and not an immediate
constant).

– [n + 2] Relative: If this bit is 1, then the operand value is PC relative—that is, the
current program counter (a.k.a., the instruction pointer) is added to the value; if the bit
is 0, the operand is absolute, and used without modification.

– [n + 3] Indirect: If this bit is a 1, then the memory location specified by the operand
is taken to be indirect in that it contains a secondary main memory location, and it is
this main memory location’s value that is used by the instruction; if the bit is a 0, then
the memory location is taken to be direct, meaning that the memory location specified
by the operand contains the final value used by the instruction. Note that this flag is
relevant only if the operand is a memory location (and not an immediate constant).

The 16 bits for these operand flags leave room for four of these per-operand groups of 4 bits.
Since there is room for only three operands in each instruction, then one of those four is
unused. Specifically:

– [111 - 108] 0th/destination: The flags that specify how to interpret the 0th operand,
also known as the destination operand.

– [107 - 104] 1st/source A: The flags that specify how to interpret the 1st operand,
also known as the source A operand.

– [103 - 100] 2nd/source B: The flags that specify how to interpret the 2st operand,
also known as the source B operand.

– [99 - 96] Unused: These flags are unused and reserved for future purposes.

2

• [95 - 0] Operands: A collection of 3 operands that specify input and output values.
Specifically:

– [95 - 64] Destination: For instructions that produce a result value, the address at
which that result should be stored. If this value is direct, then this operand is used as
the main memory location at which the result is stored; if the value is indirect, then
the value contained at the memory location specified by the operand is used as the
main memory location at which to store the result—the operand specifies a location
that contains the destination address.

– [63 - 32] Source value A: For instructions that require at least one input value,
the first such value. If direct, the operand is the input value; if indirect, the operand
specifies the main memory location that contains the input value.

– [31 - 0] Source value B: For instructions that require two input values, the second
such value. If direct, the operand is the input value; if indirect, the operand specifies
the main memory location that contains the input value.

reg PC−rel indirconst reg PC−rel indirconst reg PC−rel indirconst

opcode source A source Bdst sA sB uu destination

127 112 95 64 63 32 031

111 110 109 105 104 103 102 101

xx xx xx xx

destination flags source A flags source B flags unused

96979899100106107108

Figure 1: The layout of each 128-bit machine-code instruction.

2.3 Instruction list
The following is a list of the instructions that the K-SYSTEM ISA provides, broken down into
categories.

2.3.1 The empty instruction

This special category of instruction has only one entry, and it is notable in that it performs no work.

• 0x0000: NOOP

This instruction ignores all three operands. It performs no computation and modifies no
state.

3

2.3.2 Arithmetic/logic and memory instructions

These instructions all accept one or two source inputs, perform an arithmetic or logic manipulation,
and produce a result to be stored in some memory location. Notice that each main memory address
specifies a byte location, but the loading and storing of any word-sized value implies the use of
the four-byte sequence that begins at the specific main memory address. That is, if address k is
specified as the destination to store a word-sized value, then main memory locations (k, k + 1, k +
2, k + 3) will be written.

• 0x0001: NOT [destination] [source A]

Take the value specified by source A and invert each of its bits, storing the result at the
destination memory location.

• 0x0002: COPY [destination] [source A]

Copy the word value specified by source A and store it at the destination memory location.

• 0x0003: COPYB [destination] [source A]

Copy the least significant byte specified by source A and store it at the destination memory
location. Since only a byte-sized value is being stored, only the single main memory address
given as the destination is written.

• 0x0004: AND [destination] [source A] [source B]

Perform the bitwise logical and of the values provided by source A and source B, storing the
result at the destination.

• 0x0003: OR [destination] [source A] [source B]

Perform the bitwise logical inclusive or of the values provided by source A and source B,
storing the result at the destination.

• 0x0004: XOR [destination] [source A] [source B]

Perform the bitwise logical exclusive or of the values provided by source A and source B,
storing the result at the destination.

• 0x0005: ADD [destination] [source A] [source B]

Perform signed integer addition of the values provided by source A and source B, storing
the result at the destination. The integers are assumed to be encoded in two’s complement.
If the addition operation causes an arithmetic overflow, then an interrupt1 will occur.

• 0x0006: ADDUS [destination] [source A] [source B]

Perform unsigned integer addition of the values provided by source A and source B, storing
the result at the destination. Because the values are unsigned, no effort is made to detect
overflow, even though it is possible for the sum to exceed the capacity of the word-size,
producing an incorrect result. This instruction is intended to be used for addition where an
overflow interrupt would be undesirable.

1A later project will address this ISA’s interrupt structure in more detail.

4

http://en.wikipedia.org/wiki/Two's_complement
http://en.wikipedia.org/wiki/Arithmetic_overflow

• 0x0007: SUB [destination] [source A] [source B]

Perform signed integer subtraction of the values provided by source A and source B, specif-
ically subtracting the latter from the former, and storing the result at the destination. The
integers are assumed to be encoded in two’s complement. If the subtraction operation causes
an arithmetic overflow, then an interrupt will occur.

• 0x0008: SUBUS [destination] [source A] [source B]

Perform unsigned integer subtraction of the values provided by source A and source B,
specifically subtracting the latter from the former, and storing the result at the destination.
Because the values are unsigned, no effort is made to detect overflow, even though it is
possible for the sum to exceed the capacity of the word-size, producing an incorrect result.
This instruction is intended to be used for subtraction where an overflow interrupt would be
undesirable.

• 0x0009: MUL [destination] [source A] [source B]

Perform signed integer multiplication of the values provided by source A and source B, stor-
ing the single-word result at the destination. Notice that although multiplication produces a
double-word result, only the less significant word is stored, while the more significant word
is discarded. If the multiplication causes arithmetic overflow, then an interrupt is generated.

• 0x000a: MULUS [destination] [source A] [source B]

Perform unsigned integer multiplication of the values provided by source A and source B,
storing the single-word result at the destination. Notice that although multiplication pro-
duces a double-word result, only the less significant word is stored, while the more signifi-
cant word is discarded. Because the values are unsigned, no effort is made to detect overflow,
even though it is possible for the sum to exceed the capacity of the word-size, producing an
incorrect result. This instruction is intended to be used for multiplication where an overflow
interrupt would be undesirable.

• 0x000b: DMUL [destination] [source A] [source B]

Perform unsigned integer multiplication of the values provided by source A and source
B, storing the double-word result at the main memory location destination. Because this
instruction stores the complete double-word product, the destination cannot be a register;
instead, it must be the main memory address of the first of eight bytes into which the product
is written. Because the values are unsigned, no effort is made to detect overflow, even though
it is possible for the sum to exceed the capacity of the word-size, producing an incorrect
result.

• 0x000c: DIV [destination] [source A] [source B]

Perform the signed integer division of the values provided by source A and source B (specifi-
cally, A

B
), storing the single-word result at the destination. Notice that overflow cannot occur

with single-word integer division. However, if B = 0, then an interrupt is generated since
the result is undefined.

5

http://en.wikipedia.org/wiki/Two's_complement
http://en.wikipedia.org/wiki/Arithmetic_overflow

• 0x000d: MOD [destination] [source A] [source B]

Perform the signed integer modulus of the values provided by source A and source B (specif-
ically, A (mod B)), storing the single-word result at the destination. Notice that overflow
cannot occur with single-word integer division. However, if B = 0, then an interrupt is
generated since the result is undefined.

• 0x000e: SHFTL [destination] [source A] [source B]

Shift the bits of the source A value to the left (from less to more significant) by the number of
bits specified by source B, storing the result at the destination. 0-valued bits will be inserted
into the less significant positions.

• 0x000f: SHFTR [destination] [source A] [source B]

Shift the bits of the source A value to the right (from more to less significant) by the number
of bits specified by source B, storing the result at the destination. 0-valued bits will be
inserted into the more significant positions.

2.3.3 Unconditional branching instructions

Unconditional branching instruction alter the program counter without testing or comparing any
state.

• 0x0010: JUMP [destination]

Set the program counter to the target given in the destination. If the target is PC relative,
then the value given in the operand is an offset from the current PC, and thus is added to it;
if the destination is absolute, then the value specified in the operand is copied into the PC.

• 0x0011: CALL [destination] [source A]

Like the JUMP instruction, set the program counter to the target given in the destination,
whether relative or absolute. Additionally, store the PC + 4—the address of the instruction
that follows the CALL—at the memory location given by source A.

• 0x0012: JUMPMD [destination] [source A]

Set the program counter to the target given in the destination and change supervisor
and/or addressing mode. The unconditional branching aspect of this instruction is per-
formed in a manner identical to the JUMP instruction 2.3.3. However, this instruction also
changes the mode register, which contain flags that control the behavior of the processor.
Specifically, this word-sized register contains two flags, with the remaining bits being un-
used:

[0] User/Supervisor protection mode: When this flag is clear (that is, it has a value of
0), then the processor is in supervisor mode. When in this mode, certain instructions
are enabled. If this flag is set (that is, it has the value of 1), then the processor is in user
mode, where the aforementioned instructions cannot be used.

6

[1] Virtual/Physical addressing mode: When this flag is clear, then the processor will
use physical addressing. That is, each main memory address will be transmitted to
the device bus (on which the memory devices reside) unmodified, thus assuming that
the instructions being executed are using the physical address to which those memory
devices respond. If this flag is set, then the processor assumes virtual addressing. Each
main memory address used by the processor is automatically mapped from its virtual
address to some corresponding physical address; this conversion is performed automat-
ically by the memory management unit (MMU). More detailed on virtual memory will
be provided in a later assignment.

Note that this instruction itself can only be used in supervisor mode. If the processor
attempts to execute this instruction while in user mode, an interrupt will occur. Note also
that upon any interrupt, the processor automatically clears the user/supervisor flags, thus
putting itself into supervisor mode. The handling of interrupts, and more information on
user-vs-supervisor modes will be provided in a later assignment.

2.3.4 Conditional branching instructions

Unlike unconditional branching instructions, these alter the program counter only if the particular
test of existing state provides a true result.

• 0x0013: BEQ [destination] [source A] [source B]

Compare the values specified by source A and source B for equality. If this comparison
yields a true result, then set the program counter to the target specified by the destination.

• 0x0014: BNEQ [destination] [source A] [source B]

Compare the values specified by source A and source B for inequality. If this comparison
yields a true result, then set the program counter to the target specified by the destination.

• 0x0015: BGT [destination] [source A] [source B]

Compare the values specified by source A and source B. If A is greater than B, then set the
program counter to the target specified by the destination.

• 0x0016: BGTE [destination] [source A] [source B]

Compare the values specified by source A and source B. If A is greater than or equal to B,
then set the program counter to the target specified by the destination.

• 0x0017: BLT [destination] [source A] [source B]

Compare the values specified by source A and source B. If A is less than B, then set the
program counter to the target specified by the destination.

• 0x0018: BLTE [destination] [source A] [source B]

Compare the values specified by source A and source B. If A is less than or equal to B,
then set the program counter to the target specified by the destination.

7

http://en.wikipedia.org/wiki/Virtual_memory

2.3.5 Supervisor instructions

These instructions are used to control the state and operation of the processor. They are intended
only for use by the kernel, or any program designed to control the hardware (e.g., a hypervisor).

• 0x0019: SETTBR [source A]

Set the trap base register (TBR). This one-word register takes on whatever value is specified
by source A. For more information on the purpose and function of the TBR, see Section 5.

• 0x001A: SETIPR [source A]

Set the interrupt preserve register (IPR). This one-word register stores the address of a buffer
into which the CPU can store critical information about an interrupt before vectoring into
the kernel. For more information about the processor’s interrupt control, see Section 5.

• 0x001B: SETPTR [source A]

Set the page table register (PTR). This one-word register stores a pointer to the root of a
page table that provides the mappings that the memory management unit uses to translate
virtual addresses to physical addresses when the virtual memory system is active. For this
project, we will be using solely physical addresses, so this register’s value is irrelevant.

• 0x001C: GETCLK [destination]

Read the cycle counter register. This two-word register is reset to zero when the processor
is initialized, and then increments with each clock cycle. Since this processor executes
exactly one instruction per cycle, this register stores the number of instructions that have
been executed. Because the value is two words, the destination operand must specify a main
memory location.

• 0x001D: SETALM [source A] [source B]

Set the clock interrupt alarm register. When the cycle counter register matches the value
in this two-word register, a clock interrupt is generated. Because this alarm register is a
two-word value, source A be indirect, providing a main memory location from which the
full two-word value is taken. Moreover, if source B is 0, then source A is an absolute value
that is copied into the alarm register; otherwise, source A is a clock offset to be added to the
current cycle counter register before being written to the alarm register.

2.3.6 Atypical flow control instructions

These instructions control the flow of a program, but in non-standard ways. That is, they are not
part of the normal construction of conditional statements, loops, or procedure calls.

• 0x001E: SYSC

An intentionally invalid opcode that is reserved so that user-level processes may trigger
an interrupt into order to intentionally vector into the kernel, yet indicating to the kernel
itself that the interrupt was not the result of an error. For more informatio on the processor’s
interrupt control, see Section 5.

8

http://en.wikipedia.org/wiki/Hypervisor
http://en.wikipedia.org/wiki/Page_table
http://en.wikipedia.org/wiki/Virtual_memory

• 0x001F: HALT

An instruction that leaves the PC unchanged and disables all interrupts. As a consequence,
the processor ceases progress: any attempt to fetch-decode-execute another instruction causes
no state change, and thus no progress.

3 The K-SYSTEM assembler
Because writing programs in machine code is unpleasant, inconvenient. and often downright un-
productive, there is an assembler and corresponding assembly language. Below is a description
of the assembly code syntax, as well as instructions on how to use the assembler and examine its
output.

3.1 Assembly code syntax
Most likely, the best way to absorb the syntax used for writing K-SYSTEM assembly programs is
by example. There is a small example that does not show all features of this syntax, but it does get
you started. To obtain an example, do the following:

$ mkdir -p ˜/cs26/project-0
$ cd ˜/cs26/project-0
$ cp ˜sfkaplan/public/cs26/project-0/add-two-numbers.asm .
$ emacs add-two-numbers.asm &

You should see the following file contents:

01: ;;; A simple program that adds two numbers, demonstrating a few
02: ;;; of the addressing modes.
03:
04: .Code
05:
06: ;;; The entry point.
07: __start:
08:
09: ;; Initialize the stack at the limit.
10: COPY %SP *+limit
11:
12: ;; Copy one of the source values into a register.
13: COPY %G0 *+x
14:
15: ;; Allocate a space on the stack for the result.
16: SUBUS %SP %SP 4 ; 4 bytes per word.
17:
18: ;; Sum the two values. In particular:
19: ;; src A (%G0): A value taken from a register.

9

http://en.wikipedia.org/wiki/Assembly_language

20: ;; src B (*+y): A indirect value stored in a static space.
21: ;; dst (%SP): A register that contains a pointer.
22: ADD *%SP %G0 *+y
23:
24: ;; Halt the processor.
25: HALT
26:
27: .Numeric
28:
29: ;; The source values to be added.
30: x: 5
31: y: -3
32:
33: ;; Assume (at least) a 16 KB main memory.
34: limit: 0x5000

There are a number of critical features in this example worthy of mention:

• Comments: A semicolon (;) marks the beginning of a comment; any text that follows a
semicolon is ignored by the assembler. The use of additional semi-colons are part of an
assembly convention employed by Emacs: 3 semicolons (e.g., lines 01, 02, and 06) for
comments that begin at the start of the line of text; 2 semicolons (e.g., lines 09 and 12) for
comments that begin tabbed to the depth of an opcode; and 1 semicolon (e.g., line 16) for
comments that follow an actual line of assembly code.

• Mode markers: Lines 04 and 27 set the assembly mode. A mode marker is always on a line
of its own, and always begins with a period (.). A more thorough description of the modes
is provided in Section 3.1.1.

• Registers: Note that there are 8 registers in this ISA. Each can be specified with a leading
percentage sign (%), followed by a symbolic name. Each such name is mapped, by the
assembler, to a unique integer identifier for that register. Specifically, the register names,
their corresponding values, and their intended uses are:

Symbolic name Integer ID Intended use
%SP 0 Stack pointer
%FP 1 Frame pointer2

%G0 2 General purpose
%G1 3 General purpose
%G2 4 General purpose
%G3 5 General purpose
%G4 6 General purpose
%G5 7 General purpose

• Labels: These are symbolic markers that the assembler ties to a particular memory location.
For example, x is defined on line 30 by beginning the line with that name, and following

10

it immediately with a colon (:). Thus, the address at which the integer constant 5 will be
loaded into main memory is used wherever x appears elsewhere in the code. On line 13, x
is used as an operand. When the assembler translates this instruction into machine code, it
will use the address associated with x to form the source A operand of that instruction.

• PC relative offsets: Many labels, when used as operands, are prefixed with a plus sign (+)
(e.g., lines 10, 13, and 22). Doing so tells the assembler to translate that operand as being PC
relative. That is, when the processor executes an instruction that has a PC-relative operand, it
will take the value of that operand and add the current PC value to it. Here, the addresses
associated with labels are expressed as PC relative because the assembler cannot know at
what starting address the machine code will be loaded. Thus, by expressing those addresses
as offsets from the PC, that starting address is made irrelevant. Later we will see instances
where labels can be used as absolute addresses, but for now, they all should be PC relative.

• Indirection: Some operands are marked as indirect by using an asterisk (*) prefix, such as
on lines 10, 13, and 22. Doing so tells the processor that the desired value or location to
be used for that operand is not the expressed register or address itself, but rather the main
memory location stored within that register or address. For example, on line 22, the use of
*%SP) implies that the result of the ADD instruction should be stored not in the stack pointer
register itself, but rather at whatever main memory address is contained in the stack pointer
register.

There are more details to address here, and so the following sections will explain some of them
more carefully.

3.1.1 Mode change markers

There are four assembly modes:

1. Preamble: The assembler begins in this mode, processing only comments while waiting for
a mode change to specify another mode.

2. Code: The primary mode that you will use, in which you can list the sequence of instructions
that compose a program. In this mode, comments, intrustions, and labels on instructions are
recognized.

3. Numeric: In this mode, you can specify a sequence of literal integer values. You may
specify one or more labels, thereby marking the address of a constant. Each sequence of
word-sized values can be of any length, and may be expressed in any of the forms show in
Section 3.1.2. For example:

.Numeric
0 0b10110001 0x10e3e39a
L5: -12

4. Text: Specify a literal sequence of byte values, where each byte is provided as an ASCII
character. Labels can be provided to specify where a string begins. For example:

11

.Text
MSG1: "The quick brown fox jumps over the dazy log\n"
MSG2: "(spoonerism intentional)\n"

3.1.2 Word values

In any place where word-sized values are expected, the assembler allows three methods for speci-
fying these 16-bit values:

• Decimal: With no prefix, numbers use the usual digits 0 to 9, with an optional negative
designation (with a leading −), and no other charcaters (e.g., commas).

• Hexidecimal: With the prefix 0x, any 32-bit value. Since each each hexidecimal digit (0 to
9, A to F) corresponds to four bits, then any sequence of up to eight such digits will compose
a 16-bit value.

• Binary: With the prefix 0b, any 32-bit value. Using only the digits 0 and 1, a sequence of
up to 32 such digits.

3.1.3 Labels and branch targets

Any instruction, numeric constant, or text constant (string) may be prefixed with a label—a sym-
bolic name that represents the address at which that isntruction or constant will be loaded in mem-
ory. The label itself preceeds an instruction or constant, is composed of some unbroken sequence
of characters, begins with a letter, and is followed by a colon (’:’). A label may or may not be
on the same line as the instruction or constant to which it corresponds. For example, the following
are correct label definitions:

.Code
L1: MUL %G0 25 *%G1
L2: ; How about a comment? Blah blah.

COPY %FP 0xdeadbeef

.Numeric
array3: 0xffef 0b1001001 -82 25

A defined label may be used for any operand. The assembler will translate that label into a word-
sized memory address. By default, that memory address is the literal, complete address at which
the labeled instruction or constant will be loaded; alternatively, the use of the label may be prefixed
by the plus sign (’+’), indicating that the assembler should treat the operand as a relative offset
from the PC. For example:

JUMP L2
CALL +fib %G3
ADD 0x500 1 array3

12

3.2 Running the assembler
The assembler assumes that your assembly code is written in a file whose suffix is .asm, and that
it will create a machine code file with the suffix .vmx. To try it, create a directory for this project,
and then grab a copy of the sample program from Section 3.1:

$ mkdir -p cs26/project-0
$ cd cs26/project-0
$ cp ˜sfkaplan/public/cs26/project-0/add-two-numbers.asm .

Invoking the assembler is a simple matter:

$ k-assembler add-two-numbers.asm

The assembler should show, as debugging output, what it translated. Moreover, it should cre-
ate an executable file of machine code named add-two-numbers.vmx. Although you will
not see them for this example, the assembler attempts to provide meaningful error messages for
syntactically incorrect assembly code. However, it will only provide a message for the first error
that it encounters, and it will then abort assembly. A correctly formed assembly program will be
assembled without any error messages—in other words, no news is good news.

3.3 Examing the machine code
Once a machine code file has been generated, you can use Emacs to examine its binary contents.
For example, open the machine code file that you just created:

$ hexedit add-two-numbers.vmx

This command will change the display, showing you, with two-digit hexidecimal values for each
byte, the underlying binary values in the file. Thus, given the machine code layout described in
Section 2.2, you should be able to see the three instructions that make up the add-two-numbers
program.

4 The K-SYSTEM simulator
The simulator directory contains a system simulator—a program that performs all the actions
of all of the hardware components in a computer system. In doing so, software meant to run on
such a hardware system can instead be run on the simulator, with that software not being able to
tell the difference. Our system simulator comprises the following components:

• Central Processing Unit (CPU): A single datapath and control that fetches, decodes, and
executes the instructions of the programs run on the system. This CPU carries out the K-
SYSTEM ISA as described in Section 2.

• Memory/peripheral bus: A centralized medium to which all other devices are connected
and through which they communicate.

13

• Bus controller: The device that provides a map of all of the devices on the bus (see Sec-
tion 4.1 for more details). In real systems, this device is also the arbitrator, controlling the
use of the shared medium to avoid collisions.

• Read Only Memory (ROM): Memory units with pre-assigned contents that cannot be al-
tered. On our simulated system, each ROM is defined by a file in the host (non-simulated)
system. The size and contents of that file are taken as the size and contents of the ROM.
A system may have many ROMs. By convention the first ROM is taken as the Basic In-
put/Output System (BIOS). Consequently, the program counter (PC) in the CPU resets to the
starting address of the first ROM on the assumption that it contians the first instruction for
bootstrapping the system.

• Random Access Memory (RAM): A memory unit whose contents have no defined initial
value, and whose contents can be read and written. Typically, there will be only one RAM
device per system, although in principle there could be many.

• Console: A two-dimensional text display. Warning: This device is incomplete and buggy.
When it is fully written and tested, a fuller description of its use and behavior will be pro-
vided.

• Hard disk: A persistent storage device. Backed by a file on the host (non-simulated) system,
its contents can be read and written through signalling between the CPU and the device,
transferring larger blocks of data. Warning: This device is not yet written and does not yet
appear on the simulated system by default as yet.

Some devices (e.g., the console, the hard disk) will be completed and added soon. Others could
be added, but there will be a limit to the device used in this course.

4.1 The bus controller
The bus controller provides a window into the placement of bus devices into the physical address
space. Each device has a type (controller (1), ROM (2), RAM (3), etc.), and each device has
physical base (the address of first valid byte to which that device responds) and limit (the address
of first byte after the last valid byte to which the device responds). The controller provides access
to a device table that contains this information for every device on the bus. The devices are typically
laid out in the physical address space as shown in Figure 2.

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

0x00001000

Controller

0x00001ffc

RAM

0x00003000

0x00007000

0x00008000

0x000091a8

ROM

(BIOS)

ROM

(kernel)

0x0000a000

0x0000c350

Console

0x0000e000

0x0000e7800x00000000 0xffffffff

Figure 2: An example placement of devices in the physical address space.

The bus controller is always loaded into the physical address space with a base of 0x00000000—
the address of the first byte in the physical address space. This addres is also the start of an array

14

of values, where each sequential triplet of words is, respectively, the type, base, and limit of a bus
device. For example, the set of devices shown in Figure 2 would yield the following device table:

0x00000000: 1
0x00000004: 0x00000000
0x00000008: 0x00000ffc
0x0000000c: 3
0x00000010: 0x00002000
0x00000014: 0x00006000
0x00000018: 2
0x0000001c: 0x00007000
0x00000020: 0x000081a8
0x00000024: 2
0x00000028: 0x00009000
0x0000002c: 0x0000b350
0x00000030: 4
0x00000034: 0x0000d000
0x00000038: 0x0000d780
0x0000003c: 0
...
0x00000ff8: 0

So, 0x0000000c through 0x00000017 contain three word values. The first, at address
0x0000000c, indicates that this is a RAM device (where 2 would indicate a ROM, and 1
would indicate a bus controller). The second field, at address 0x00000010, indicates that the
base address for the RAM is 0x00002000. Finally, the third field, at 0x00000014, indi-
cates that the limit of this device is 0x00006000. The next three words, from 0x00000018
to 0x00000023, contain these same three fields for the ROM assumed to contain the BIOS. An
entry whose type field is 0 is an empty entry (e.g., at address 0x0000003c), and indicates that
no more meaningful entries exist beyond this point.

4.2 Starting the simulator
To run the simulator, you first need some kind of assembled machine code for the simulator
to run. Let’s ass that you have followed the add-two-numbers example from Section 3.2,
and thus have an executable image—a file of machine code that can be loaded and run—named
add-two-numbers.vmx. To then invoke the simulator, you use the following command:

$ k-simulator add-two-numbers.vmx

The simulator will start. First, it will show, as debugging output,3 the list of devices that are
connected to the bus and the address ranges to which each device responds. Second, the simulator
presents you with a prompt:

3This output is provided both as an aid to me for debugging the simulator and as an aid to you in debugging your
programs. Section 4.3 shows how to increase or decrease the amount of debugging output shown.

15

[pc = 0x00005000]:

This prompt always shows the current value of the program counter (PC), which is initialized
to the first address of the first ROM (which is assumed to be the BIOS). At this prompt, you can
examine or change any of the system’s state—specifically, any memory location, or any CPU reg-
ister. You can also control progression of the CPU’s execution. To see the list of valid commands,
use the help command:

[pc = 0x00007000]: help
Commands:

help
step <number of steps>
until <breakpoint address>
peek <hexidecimal memory address>
poke <hexidecimal memory address> <word value>
showregister <register name [%<register number (0 - 7) | pc |

mode | tbr | ptr | ip | clock | alarm | debug]>
setregister <register name [%<register number (0 - 7) | pc |

mode | tbr | ptr | ip | clock | alarm | debug]>
<word value>

showconsole
exit

[pc = 0x00007000]:

We will now explain what many of this commands do, although we will not address every detail
of each one.

4.3 Setting the debugging level
There are a number of CPU state values—that is, logical registers in the CPU that control how the
CPU behaves. A number of these—tbr, ip, supervisor, and vmem—we have discussed in
class or have been presented along with instructions that manage them in Section 2.3. We focus
here, though, on a register that is not part of the K-SYSTEM ISA, but just part of this implemen-
tation: the debug register, which controls the level of debugging output that the simulator will
emit. By setting this register to 1, we will induce the simulator to provide a good deal of useful
information:

[pc = 0x00005000] setregister debug 1

The extra debugging output can be eliminated by resetting this register to its default, 0. The
register can also be set to higher values, but any value larger than 1 will currently yield an erratic
collection of output used for debugging the simulator, so I don’t recommend it.

4.4 Manipulating main memory
The peek and poke commands allow you respectively to read and write the contents of main
memory. You can examine any valid address using peek:

16

[pc = 0x00005000]: peek 0x8000
@0x00008000 = 0x00024200

If you want, you may also change any word of memory by using poke. However, that should be
an unusual operation to perform. For example, you may discover that a program has a bug, and that
you can fix the bug by modifying an instruction in-memory, while the program is running. More
likely, though, you’ll want to stop the program, fix the bug, assemble the correction, and re-run the
program. In case you wish to use this command, it looks like:

[pc = 0x00005000]: poke 0x2000 0xdeadbeef
@0x00002000 = 0xdeadbeef

4.5 Stepping through instructions
You may instruct the simulator to perform any number of instructions—to execute a number of
steps—before stopping to present the prompt again. You can execute any constant number of
instructions in a row. For example, to execute three instructions:

[pc = 0x00008000]: step 3
DEBUG [0]: <0>[@0x00008000] 0x 00024200 00000000 00000058 00000000:

COPY %0x00000000 @+0x00000058
DEBUG [0]: <1>[@0x00008010] 0x 00024200 00000002 00000040 00000000:

COPY %0x00000002 @+0x00000040
DEBUG [0]: <2>[@0x00008020] 0x 000a4480 00000000 00000000 00000004:

SUBUS %0x00000000 %0x00000000 0x00000004

Here, the CPU executes one instruction. The CPU, through debugging output, shows a great deal
of information about what happened:

• The cycle counter: The number provided in angle brackets (e.g., <2>) indicates the value of
the cycle counter register as this instruction was executed. Since one instruction is performed
per clock cycle, this value also doubles as an indication of the number of steps that have been
taken since the start of the program.

• The PC: Shown in square brackets (e.g., [@0x00008020]), the debugging output shows
the address from which the instruction was fetched—that is, the value of the program counter.

• The machine code: Next, the four-word machine-code instruction is provided as a 32-digit
hexidecimal value. The exact bits, as read from the executable image file (e.g.,
add-two-numbers.vmx, are shown here for your manual verification or inspection.

• Disassembly: The simulator disassembles the machine code instruction. That is, it converts
the machine code back into an assembly form, thus approximating the assembly source code
that you may have written.

The simulator also allows you to execute instructions until the PC takes on some particular value,
effectively executing until a breakpoint in encountered:

17

http://en.wikipedia.org/wiki/Disassembler
http://en.wikipedia.org/wiki/Breakpoint

[pc = 0x00008000]: until 0x8040
DEBUG [0]: <0>[@0x00008000] 0x 00024200 00000000 00000058 00000000:

COPY %0x00000000 @+0x00000058
DEBUG [0]: <1>[@0x00008010] 0x 00024200 00000002 00000040 00000000:

COPY %0x00000002 @+0x00000040
DEBUG [0]: <2>[@0x00008020] 0x 000a4480 00000000 00000000 00000004:

SUBUS %0x00000000 %0x00000000 0x00000004
DEBUG [0]: <3>[@0x00008030] 0x 00075420 00000000 00000002 00000024:

ADD *%0x00000000 %0x00000002 @+0x00000024

5 Interrupts

5.1 Codes
For a kernel to establish control of the CPU and the hardware overall, it must establish its proce-
dures as the ones to call when CPU interrupts occur. The K-SYSTEM ISA enumerates the following
interrupts:

0. INVALID_ADDRESS: Some operand specified a memory address that is invalid. Typically
used when an invalid or impermissible virtual address cannot be translated.

1. INVALID_REGISTER: Some operand specified a register number that is invalid.

2. BUS_ERROR: An operand provided an address that yielded an address on the bus that was
invalid. The bus may have received an address for which there is no responding device, or
the bus may have refused to process a misaligned address.

3. CLOCK_ALARM: A periodic alarm generated when the cycle counter matches the alarm
register. (See the SETALM instruction in Section 2.3.5.)

4. DIVIDE_BY_ZERO: Occurs when one of the arithmetic division instructions receiveds a
denominator operand whose value is zero.

5. OVERFLOW: Occurs when a signed arithmetic operation yields an overflowed result.

6. INVALID_INSTRUCTION: If an instruction contains an invalid opcode, or if an operand
has invalid status bits, then this interrupt occurs.

7. PERMISSION_VIOLATION: A supervisor-only instruction (see Section 2.3.5) was issued
while the processor was in user mode.

8. INVALID_SHIFT_AMOUNT: When one of the arithmetic shift instructions is used, the
number of bits to shift can be no more than the word size.

9. SYSTEM_CALL: A special case of the INVALID_INSTRUCTION interrupt reserved for
the use of a particular invalid opcode used for system call vectoring.

18

5.2 Vectoring
When an interrupt occurs, the processor performs a specific sequence of steps:

1. Elevate mode: Set the processor into supervisor mode.

2. Preserve state: Store into the interrupt preserve the program counter and any auxiliary in-
formation about the interrupt (e.g., the virtual address that triggered an INVALID_ADDRESS
interrupt). The interrupt preserve is a main memory space—at least two words in size—that
the processor finds via the interrupt preserve register. (See the description of the SETIPR
instruction in Section 2.3.5.)

3. Vector to interrupt handler: The processor uses the interrupt code to find the correspond-
ing handler procedure. Specifically, the trap table is an array of pointers to the entry points
of interrupt handler procedures. The processor looks up the correct entry in this table by
calculating . . .

te = tb + c|w|

. . . where te is the address of correct trap table entry, which is obtained from the tb trap
base—the starting address of the trap table—as well as c, the interrupt code, and |w|, the
word size. In short, the interrupt code is an index into the array of word-sized addresses.

Once the handler finds the correct table entry address (te), then it can grab the value from
that address, thus pulling the address to which the processor then jumps in order to handle
the interrupt.

6 Your assignment
Your goal with this assignment is to write, in assembly, the code needed to bootstrap our simulated,
hard-disk-less system. Doing so requires you to carry out two tasks:

1. Write a BIOS: When assembled, this executable image should be provided to the simulator
first on the command line so that it is loaded as the BIOS and executed first. It should
perform a few critical tasks to get the kernel running:

(a) Read the bus controller map (see Section 4.1) to find both the second ROM (assumed
to be the kernel) and the RAM.

(b) Copy the contents of the second ROM into RAM.

(c) JUMP to the first kernel instruction in RAM.

2. Write a kernel that initializes the system: The executable image, provided as the second
ROM to the system, will be loaded and called by the BIOS. Although later it will perform
a larger number of more complex tasks, for now, it needs only to assert control over the
hardware, like so:

19

(a) Find a new, unused portion of RAM (that is, part of RAM not storing the executable
image of the kernel itself).

(b) Create a trap table, and load it with the addresses of interrupt handler procedures. For
whichever interrupts the kernel does not handle in any specific way—initially, all of
them—insert the address of a null interrupt handler that simply halts the system.

(c) Install the trap table by using the SETTBR instruction.

(d) Load a single user-level program—here, the add-two-numbers program will do—
from the executable image in the third ROM.

(e) Jump into that user-level program, exiting supervisor mode by using the JUMPMD in-
struction.

In later projects, we will substantially augment this kernel. However, its initialization routine is
likely to stay largely unchanged.

7 How to submit your work
Use the cs26-submit command to turn in your programs, like this:

cs26-submit project-0 bios.asm kernel.asm

This assignment is due at 11:00 am on Friday, February 19.

20

	Overview and motivation
	The k-system ISA
	Basic concepts
	Machine code format
	Instruction list
	The empty instruction
	Arithmetic/logic and memory instructions
	Unconditional branching instructions
	Conditional branching instructions
	Supervisor instructions
	Atypical flow control instructions

	The k-system assembler
	Assembly code syntax
	Mode change markers
	Word values
	Labels and branch targets

	Running the assembler
	Examing the machine code

	The k-system simulator
	The bus controller
	Starting the simulator
	Setting the debugging level
	Manipulating main memory
	Stepping through instructions

	Interrupts
	Codes
	Vectoring

	Your assignment
	How to submit your work

