
SYSTEMS II — PROJECT 1
Revision 2 [2010-Feb-18]

Compiler parsing and internal representation

1 The goal of this project
You will take possession of a the skeleton of a compiler. Your first task will be to parse program text
and, whenever doing so successfully, building an internal representation. Your skeleton contains
all the code and structure needed except for the key methods for parsing and for creating the chain
of objects that represent the program parsed. Adding that code will be your task.

2 The grammar
Here is the complete grammar for our langauge. We can make changes, but starting with something
complete will help us get started.

<program> -> <declaration list>
<declaration list> -> [null | <declaration> <declaration list>]
<declaration> -> [<variable> | <procedure>]
<variable list> -> [null | <variable> <variable list>]
<variable> -> ’var’ <integer> <identifier>
<procedure> -> ’procedure’ <integer> <identifier>

’(’ <variable list> ’)’
’[’ <variable list> ’]’
<statement>

<statement list> -> [null | <statement> <statement list>]
<statement> -> [’return’ <expression> |

<if then else> |
<if then> |
<while> |
<begin end> |
<expression>]

<expression list> -> [null | <expression> <expression list>]
<expression> -> [<reference> |

<dereference> |
<identifier> |
<integer> |
<procedure call>]

<reference> -> ’&’ <identifier>
<dereference> -> ’*’ <expression>
<procedure call> -> ’(’ <identifier> <expression list> ’)’
<if then> -> ’if’ ’(’ <expression> ’)’ <statement>

1

<if then else> -> ’if’ ’(’ <expression> ’)’ <statement>
’else’ <statement>

<while> -> ’while’ ’(’ <expression> ’)’ <statement>
<begin end> -> ’{’ <statement list> ’}’
<identifier> -> [<alphabetic> | <symbol>] <alphanumsym list>
<alphabetic> -> [’a’ | ’b’ | ’c’ | ... | ’z’ |

’A’ | ’B’ | ’C’ | ... | ’Z’]
<alphanumsym list> -> [null | <alphanumsym> <alphanumsym list>]
<alphanumsym> -> [<alphabetic> | <dec digit> | <symbol>]
<symbol> -> [’!’ | ’@’ | ’#’ | ’$’ | ’%’ | ’ˆ’ |

’_’ | ’-’ | ’+’ | ’=’ | ’|’ | ’\’ |
’:’ | ’<’ | ’>’ | ’?’ | ’/’]

<integer> -> [<dec int> | <hex int> | <bin int>]
<dec int> -> [<dec digit> <dec digit list> |

’-’ <dec digit> <dec digit list>]
<dec digit list> -> [null | <dec digit> <dec digit list>]
<dec digit> -> [’0’ | ’1’ | ’2’ | ... | ’9’]
<hex int> -> ’0x’ <hex digit> <hex digit list>
<hex digit list> -> [null | <hex digit> <hex digit list>]
<hex digit> -> [<dec digit> |

’A’ | ’B’ | ... | ’F’ |
’a’ | ’b’ | ... | ’f’]

<bin int> -> ’0b’ <bin digit> <bin digit list>
<bin digit list> -> [null | <bin digit> <bin digit list>]
<bin digit> -> [’0’ | ’1’]

3 Internal representation

3.1 Getting the code
I have written a set of Java classes to help you get started with the problem of parsing and internally
representing the parsed text in a structured manner. First, to obtain the code for these classes, login
to the CS systems and do the following:

$ cd cs26
$ tar -xzvpf ˜sfkaplan/public/cs26/project-1.tar.gz
$ cd project-1

3.2 Understanding this code
Notice that the code you just obtained is collection of classes, many of which are related to one
another via inheritance.1 Each of these classes is named and designed such that it corresponds to

1If you are not familiar with inheritance, please see me, and I can bring you up-to-date with the aspects of this
language feature that you need to know here.

2

some production rule.
Your primary goal in this assignment is to have each production rule return an object that

contains the information parsed by that rule, or, if the parsing failed, return null to indicate
failure. Thus, these methods that implement production rules will no longer return true or
false. Specifically:

• The lowest-level production rules that parse individual characters (e.g., <decimal digit>)
should return a pointer to a Character object. Note that a Character is an object that
contains a char, but since it’s an object, we have the additional capability of returning null
when none of the desired characters are found during parsing.

• Production rules that return sequences of characters (e.g., <bin digit list>) should
return a pointer to a String object. After all, strings are character sequences.

• All higher-level rules should return a pointer to a specially designed object whose purpose
is to store the information read by a particular parsing rule. For example, the code that
I just provided contains a Variable class, where each Variable object contains both
the name of declared variable and its size (that is, the number of bytes associated with that
named space).

If you look in the provided Parser.java file, your will see methods for parsing decimal inte-
gers. Specifically, notice that the methods follow the pattern described above. Similarly, consider
writing methods to parse a variable declaration:

1. Check for the var keyword.

2. Call on the method to parse an integer, getting back a pointer to an Integer object.

3. Call on the method to parse an identifier, getting back a pointer to an Identifier object.

4. Create and return a new Variable object, passing its constructor the Integer and Identifier
objects from the previous two steps.

3.3 What you must do
For each production rule, write a method that implements that rule. If the rule succeeds, it should
return an object of the proper type. Some of the methods should return standard Character or
String objects; others should return one of the specialized objects provided (e.g., a ReturnStatement
object).

Ultimately, the top-level <program> production rule should return a List<Declaration>
object.2 If you try to print this object, it should recursively call the <toString()> method in
each of the parsed objects, producing a (poorly formatted) representation of what was just parsed.
Later, we will add to these classes so that they output appropriate assembly code—for now, we
only want to see that we’ve parsed and internally represented everything correctly.

2And if you don’t know about Java lists, linked lists, or array lists, let me know so that I can show what these are
and how to use them. It’s not too complex, I promise.

3

4 How to submit your work
Use the cs26-submit command to turn in your programs. From your project-1 directory,
do this to submit all of the classes, including ones written by both you and me:

cs26-submit project-1 *.java

This assignment is due at 11:59 pm on Friday, February 26.

4

	The goal of this project
	The grammar
	Internal representation
	Getting the code
	Understanding this code
	What you must do

	How to submit your work

