
COMPUTER SYSTEMS I — LAB 3
Memory and a 1-bit counter

1 A starting bit of memory: An S-R latch

To get started on this lab, use our existing chips and their gates to create for yourself an S-R latch. You can
follow our description from class by using actual push-buttons for the S and R inputs.

Specifically, on the ETS-7000, you will notice that, in the lower-left corner of the device, there are two
push-buttons, PA and PB . Near them, there are four outputs on the board: A, Ā, B, and B̄. When button
PA is not being depressed, then A = 0 and Ā = 1; when PA is depressed, then A = 1 and Ā = 0. PB , B,
and B̄ behave analogously. Thus, these two buttons can serve as S and R for your latch.

2 Enhancing that bit of memory: A D latch

You will then recall that we observed a limitation with our S-R latch. We wanted there to be an input, D,
whose value, 0 or 1, would be adopted into the memory element at some moment. Specifically, we wanted
Q, the output of the memory element, to take on whatever value of D had when another input, C last has
the value 1. That is, when C = 1, Q = D; when C = 0, Q does not change—whatever that means!

Build upon your S-R latch, turning it into a D latch That is, have the memory element adopt of D when
C = 1, but not when C = 0. To perform this task, you will likely need to stop using your push-buttons as
S and R, but you will have to use one of them as C.

3 A one-bit counter

Now that you have a memory element that can take on a value only when you press a particular button C,
let’s build a 1-bit counter. That is, let’s build a circuit that counts from 0 to 1 and then “rolls over” back to
0 again. It’s like an odometer with a single, binary digit.

To do so, use your D latch to store the current counter value. That is, its output, Q, shows the current
value of the counter. The input to the D latch—D—should be the next value of the counter. Thus, if the
value of the counter is 0, you should be able to press the button (that is, “tick the clock”) and advance the
counter to 1. Press the button again, and the counter “rolls over” to 0.

A problem: It’s a great idea! But it won’t work. Your task is to figure out why is doesn’t work. When
you do, come and talk to me, and we’ll figure out what needs to happen to fix it!

4 Building a flip-flop

Congratulations! If you’re here, you know what the problem is with your 1-bit counter and your D latch.
So, build a D flip-flop to fix your 1-bit counter. Make it work and show your working flip-flop to some kind
of authority figure.

5 The 4-bit counter

Once you have completed a working flip-flop, you now need to build a 4-bit counter that counts from 0 to
15, and then wraps back around to 0 again. Like the 1-bit counter, the rate at which this counter progresses
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should be controlled by a clock input. Thus, after 16 clock cycles, the counter should be back to the value at
which it started, having progressed through every value once.

Flip-flop chips: The 74LS273 chip contains 8 1-bit D flip-flops. Examining the chip diagram, we see that
this is a 20-pin chip (unlike the 14-pin chips that we’ve used so far). It still requires power (Vcc) and ground
(GND) connections. Each of the 8 flip-flops has a data input (D) and a data output (Q).

There are two new pins that have not appeared on previous chips for us. The first is the clock (CLK) pin.
This pin is connected to the clock input of all of the 8 flip-flops in the chip—that is, this chip behaves as an
8-bit register. Thus, when you cycle the input on this pin, all of its flip-flops will adopt new values. Note
that these flip-flops are rising edge-triggered—that is, they adopt a new value as the CLK pin transitions
from 0 to 1.

The other new and noteworthy pin on this chip in the negated clear (CLR). When this input to this pin
is 1, the flip-flops will behave normally. However, if the input of this pin is set to 0, all of the flip-flops in
the chip will have their value immediately reset to 0, irrespective of the CLK input. I suggest connecting
this pin to its own pulse switch (see below), allowing you to reset your counter to zero with the press of one
button.

5.1 How to do it (roughly)

To make a 4-bit counter, you need a 4-bit register—a role that can be performed by a single 74LS273 chip.
The value stored by this register, and thus its output value, is, at any moment, the current state of the
counter—that is, it will emit the counter’s current value. You then need a combinational circuit that can use
the register’s output value as an input, and then generate the counter’s next value. Notice that you have
already created this combinational circuit in the form of the incrementor from Lab 2.

Show your work before moving onto the final part of the assignment.

6 Changing the sequence

Once you have created your basic counter, you need to create a slightly different counter. Specifically, you
need a 3-bit counter that counts through the following arbitrary sequence of values:

000
011
110
100
010
101

Note that the counter should start at 000, progress through the above values to 101, and then wrap around
to 000 again. Also note that the period of this counter is 6—that is, not all 8 possible 3-bit values are used.
Every 6 clock cycles, the counter should repeat itself.

Once you have this final counter sequence working, show your work.

This assignment is due Friday, September 30, 11:00 am
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