
INTRODUCTION TO COMPUTER SCIENCE I
PROJECT 3A

Conditionals and loops

Here is the first of a two-part project that will exercise your use of our new-found conditional
and iterative statements. You will use them, along with your experience with calling and writing
methods, in various combinations to perform a few new types of calculations.

1 Factorials
Consider the factorial function:

fact(n) =

{
1 if n = 0

n× fact(n− 1) if n > 0

This function forms a sequence, where the 0th entry is 1, and the nth entry is the product of all
number from 1 to n. The sequence begins: 1, 1, 2, 6, 24, 120, 720, . . .

A program to write: You must write a new program, from scratch, composed of a few methods.
Here is the progression that you should follow:

1. Getting started: Login to remus/romulus. At the command line, create a new directory
and change into it, like so1:

$ mkdir project-3
$ cd project-3

Then, create and open a new, blank source code file with Emacs:

$ emacs Factorial.java

Finally, inside this file, put in the usual stuff that surrounds the methods that you write:

1A number of people have been a bit confused about directories and the commands that allow you to manipulate
your files and directories at the shell prompt. First, note that the first command, mkdir, is something that you should
do only once at the beginning of each project, thus making a directory for that project. The second command here, cd,
makes the shell change its current directory so that all of the files that you open, compile, and run from that point for-
ward are in that directory. Thus, the cd command is one that you must use each time you login to remus/romulus
before using emacs, javac, java, or cs111-submit. If you want to know more about Linux/UNIX basics, shell
commands, and file/directory management, start with the Information Technology Department’s web pages on UNIX
and the tools associated with it

1

https://www.cs.amherst.edu/~sfkaplan/courses/fall-2012/COSC-111/
https://www.amherst.edu/offices/it
https://www.amherst.edu/offices/it/help/software/unix


import java.util.Scanner;

public class Factorial {

public static Scanner keyboard = new Scanner(System.in);

// YOUR METHODS WILL GO HERE.

}

2. Write a Factorial calculating method: Write a method named fact that accepts, as a
parameter, an integer n. This method should then calculate the n! (the nth factorial number)
and return it. That is, your method should begin:

public static long fact (int n) {

Fill in the body of this method with appropriate code to perform the needed calculation. You
should be using recursion—that is, a method that calls itself—to perform this calculation.
Notice the return type of long for this method. Since factorial numbers grow to be quite
large rather quickly, using a larger integer type is important and useful here.

As always, feel free to write a temporary main method to test your fact method. Have
main pass some known value for n to your fact method, and the print the result that is
returned. Verify that the value computed by your fact method is correct.

3. Write a factorial search method: Even a long integer has a limited range. Any number
larger than about 8 quintillion cannot be stored in such a variable. In fact, if you take the
largest position integer that can be stored in a long integer and then add 1 to it, the value
will wrap around into the negative numbers. Consequently, if we try increasing values of
n on our fact method, eventually we will find a value (let’s call it nmax) that yields the
largest factorial number that can be correctly contained in a long integer variable—let’s
call that one fmax. That is, if we pass nmax + 1 to fact, the value returned will appear
negative, which is, of course, incorrect.

We seek nmax. Write a method named findMaxFact that accepts no parameters and
returns the value of nmax—that is, the largest n for which your fact method returns a
correct result. The method should begin like this:

public static int findMaxFact () {

4. Write your main method: If you previously wrote a main method to test your previous
work,2, now is the time to delete that code and start the body of main anew. Specifically, you
should write main so that it calls your findMaxFact method to obtain nmax. It should
then call fact directly, passing it nmax to obtain that largest correct factorial number, fmax.
Finally, main should print both numbers, like so:

2Always a good idea

2



fact(22) = 712371238124

[Warning: nmax 6= 22, and fmax 6= 712371238124. Your program should emit the correct
answer in that format, but not using those exact values, which are incorrect.]

2 Finding part B
Once you have the correct fmax value, use it to fill in for XYZ in the following web address that
you should provide to a web browser:

https://www.cs.amherst.edu/˜sfkaplan/courses/fall-2012/COSC-111/
projects/XYZ.html

[Warning: Some people, on Project 2, encountered difficulties when copying-and-pasting this
web address from this PDF document into their browser. In particular, the tilde character (˜) seems
not to be copied correctly on some types of computers, and thus mangles the web address. At the
least, be sure that the tilde character appears correctly before my username (sfkaplan); to be
truly cautious about this problem, type the entire web address by hand.]

This web page will redirect you to part B of this project.

3 How to submit your work
As usual, use the cs111-submit command:

cs111-submit project-3a Factorial.java

Part A is due on September 27/28, at the beginning of your lab section

3

https://www.cs.amherst.edu/~sfkaplan/courses/fall-2012/COSC-111/projects/project-2.pdf

	Factorials
	Finding part B
	How to submit your work

