INTRODUCTION TO COMPUTER SCIENCE 1

PROJECT 4A
Shift Cipher

Project 4 is a three-part, two-week assignment that will exercise our new-found abilities with the
char data type and arrays. Specifically, we are going to delve into the world of cryptography,
writing programs that implement two different ciphers, and, in the end, performing a bit of crypt-
analysis (code breaking). In doing so, we will need to manipulate and use arrays of characters in
many different ways.

1 Cryptography

Cryptography is, loosely speaking, the study of methods for taking “human readable” data (clear-
text or plaintext) and then scrambling (encrypting) it into an obfuscated form (ciphertext) that
cannot easily be read. Of course, such obfuscation is useless unless there is some means by which
the ciphertext can be restored (decrypted) to its original cleartext form.

A cipher defines a lone-to-one correspondence between plaintexts to ciphertexts. That is, it de-
fines a pair of algorithms, one for encryption and one for decryption, that respectively scramble
and unscramble data. Each cipher uses a single parameter called the key that is used as part of
the encryption and decryption calculations. For a given ciphertext, the same key must be used to
decrypt it as was used when creating it during encryption[]

The ciphers that we are going to use are monoalphabetic substitution ciphers. Specifically, for
these ciphers, encryption is accomplished by replacing each character in the plaintext with a dif-
ferent letter in the ciphertext. Therefore, the lengths of the plaintext and the ciphertext are equal,
and both encryption and decryption can each be performed one character at a time.

2 The Caesar Cipher

For this first part of this project, we will use the Caesar cipher (also known as a shift cipher). To
encrypt a message using this cipher, each character of the cleartext is shifted forward by k charac-
ters in the alphabet, thus producing a ciphertext. Likewise, decrypting a message requires shifting
each character in the ciphertext backwards by the same & characters in the alphabet. Moreover,
since the alphabet of characters is a fixed-sized list, it is possible to shift “off the end” of the list.
Whenever this situation arises, the shift operation “wraps around” to the beginning of the alphabet.

To see how this cipher works, consider only the 26 uppercase letters of the English alphabet. Fur-
thermore, consider using the key value k£ = 5. The last 5 characters in this alphabet, when shifted,
are wrapped-around to the first five characters. So, the correspondence between the cleartext and
ciphertext characters would be:

Cleartextchar | A| B|C|/D|/E|F|G|... | S|T|U|V|W|X|Y|Z
Ciphertextchar | F G| H| I |[J|K|L|... | X|Y|Z|A|B |C|D]|E

I'The use of the same key value for encryption and decryption makes a cipher symmetric. There are asymmetric
ciphers, most notably public-key cryptography, where different keys are used for encryption and decryption, but those
are beyond the scope of this course. Consider the Networks and Cryptography course.

1

https://www.cs.amherst.edu/~sfkaplan/courses/fall-2012/COSC-111/
https://www.cs.amherst.edu/~sfkaplan/courses/fall-2012/COSC-111/projects/project-4a.pdf
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Cipher
http://en.wikipedia.org/wiki/Cryptanalysis
http://en.wikipedia.org/wiki/Cryptanalysis
http://en.wikipedia.org/wiki/Bijective_function
http://en.wikipedia.org/wiki/Monoalphabetic_substitution
http://en.wikipedia.org/wiki/Caesar_cipher
http://en.wikipedia.org/wiki/Public_key_cryptography
https://www.cs.amherst.edu/~sfkaplan/courses/spring-2012/COSC-281/

Thus, the following message, if encrypted using the same key of £ = 5 would be:

Cleartext message | THEQUICKBROWNFOX
Ciphertext message | YMJVZNHPGWTBSKTC

Implementation hints: In order to write a program that performs this type of encryption and
decryption, there are two valuable observations that may help:

1. A char is an integer in disguise: Since each character is really a numeric value, then you
can perform all of the common arithmetic operations on them. You can add £ to shift forward
for encryption, and you can subtract k to reverse the shift for decryption.

2. There are 256 possible char values: Each char datum is a numeric value between 0 and
255 (inclusive). If, by shifting a character (adding or subtracting k) you obtain a result that
is outside this range, then you can use the modulus operator to appropriately “wrap around”
the result into the correct range. That is, in Java, x % v yields the remainder after dividing
x by y. So, if you take a value mod 256, then the remainder after dividing any value by 256
must be between 0 and 255.

3 Your tasks

Now that you know how the Caesar cipher works, you will need some code with which to get
started. Follow these steps to obtain Java code that leaves only the interesting part—the encryption
and decryption tasks—for you to write:

1. Login to remus/romulus.

2. Create and change into a directory for this project:

S mkdir project-4a
$ cd project-4a

3. Copy a few files from a directory of mine:

S cp “sfkaplan/public/COSC-111/project—-4a/«*

4. Check that you have all four files:

S 1s
CaesarDecrypt.java CaesarEncrypt.java
project—-4a.ciphertext Tools.class

Write the encryptor: Use Emacs to open CaesarEncrypt. java. First, you will see that
main () is already written. Do not make any modifications to main () ; it is constructed to use
the already-compiled code in Tools.class to read and write the cleartext and ciphertext files.

The part on which you must focus your attention is the encrypt () method, whose body is
initially empty. Specifically, note the first line that declares the method’s name, return type, and
parameter list—it’s signature:

public static char[] encrypt (char[] cleartext, int key) {

This method is passed an already-constructed array of characters, cleartext. As the pa-
rameter name suggests, this variable points to an array that contains the sequence of characters
that is the cleartext message. Additionally, the key parameter is an integer that specifies by how
many positions in the alphabet each cleartext character should be shifted to produce its ciphertext
substitute—that is, it is the value & described in Section

This method must create a new array of char of the same length as the cleartext that will hold
the ciphertext. Each element of the cleartext array should be copied into the same position in
the ciphertext array, except that the character value inserted into the ciphertext array must be the
shifted equivalent of the corresponding cleartext character. When every cleartext character has
been copied and shifted into the ciphertext array, then a pointer to that new array must be returned
to the caller.

Write the decryptor: Repeat the above process. Open CaesarDecrypt . java with Emacs.
The main () method in this program will be similarly structured to the one from CaesarEncrypt. java,
except with the roles of cleartext and ciphertext inverted. Again, you should leave unchanged the
code provided inmain () that reads and writes the ciphertext and cleartext files.
Of course your task for this decryptor program is to fill in the body of the decrypt () method.
It’s signature is analogous to the signature for encrypt (), except with the roles of ciphertext and
cleartext inverted. That is, this method is passed an array that contains the ciphertext, as well as a
key k by which to reverse the shift of each character. The method must return a newly constructed
array that contains the recovered cleartext.

Testing your encryption/decryption: Once you’ve written encryption and decryption programs
that at compile, and that you suspect may just possibly work, then you need to test your implemen-
tation of this cipher. To do so, follow these steps:

1. Create a sample cleartext file: Use Emacs to open a new ﬁleE] into which you can write
whatever you like. I suggest that you write a short, simple cleartext message for yourself:

$ emacs my-message.cleartext &

2What you choose to name this new file is immaterial. The suffix—the portion of the name that follows the dot
(.)—means nothing to Emacs, nor to your encryption and decryption programs. I suggest here, by example, a naming
convention that simply helps us humans to keep the files and their uses straight.

2. Encrypt: Run your encryption program on your newly created cleartext file. For your tests,
choose a key value 1 < £ < 255 to use for both encryption and decryption For the
examples shown here, we will use a key value of £ = 8. Invoke the encryption program as
follows, and it will (if correctly written) produce a new ciphertext file:

$ java CaesarkEncrypt my-message.cleartext
my-message.ciphertext 8

For the first time, we are providing command-line arguments to our programs. Specifically,
we are specifying the name of the cleartext file, the name of a new ciphertext file, and the
key value as part of the command that starts the program. You need not worry about how
to make your program handle these arguments; main () is already written to handle this
problem. What matters is that you specify these file names and the key value every time you
encrypt (and decrypt).

After the encryptor runs, you can use Emacs to open your ciphertext, ny-message.ciphertext.
However, what you see should be an unreadable bunch of junk. Certainly look at it, as a point

of curiousity, but don’t expect to discern much that is meaningful by examining the cipher-

text directly in this fashion.

3. Decrypt: Now run your decryption program on your ciphertext file using the same % value.
When running the decryptor, you must provide the name of the ciphertext file, the name of a
new cleartext file, and the key value. For example:

$ java CaesarDecrypt my-message.ciphertext
my-message.decrypted 8

Here, the ciphertext is taken from the file my-message.ciphertext, it is decrypted
with the key £ = 8, and a new cleartext file named my-message.decrypted will be
created and will store the decrypted cleartext. Notice that I chose not to re-use the original
cleartext file name, my-message.cleartext. If I were to do so, then the decryptor will
overwrite the original cleartext, eliminating the original data for comparison. By using a
different file name for the decryption result, I will have two versions of the cleartext that I
can compare.

4. Compare: For a small and simple message, you simply can open bothmy-message.cleartext
and my-message.decryption with Emacs and compare the two. Of course, if they do
not match, then one or both of your encryption and decryption code contains an error. For
larger messages, exact comparison may be difficult and tedious. Thus, you can automate the
comparison:

$ cmp my-message.cleartext my-message.decrypted

30f course, any integer value for k is legitimate. If k = 0, then the cleartext and ciphertext will be identical. If
k < 0or k >= 256, then k will produce the identical results to &’ = k mod 256. For example, if k = 258, then the
ciphertext produced will be identical to the one that £ = 2 would yield.

4

The cmp (compare) command examines the two files for differences. If they are identical,
then no output appears—you will just see your prompt reappear. If they files do not match,
then the cmp program will indicate the first location at which the files differ.

Decrypting the secret message: One of the files that your copied from my directory is
project-4a.ciphertext. If you open this file with Emacs, you will see that it is the same
kind of unreadable goop as your own cipertext file. However, you now have a working decryptor
program. Use it.

Notice that I have not specified the key. However, there are only 255 of them. Try each until you
find one that works. You may attempt this brute force attack on the key by running the program
many times, each with a different key value, or by adding some special-purpose code to your
decryptor program. What matters is that you both decrypt the message, and that you discover and
record the key used for that decryption. The decrypted message will itself provide instructions for
moving onto part B of the assignment.

4 How to submit your work

When you have completed this part of the assignment, submit your encryptor, decryptor, and the
decrypted secret message:

cslll-submit project-4a CaesarEncrypt.java
CaesarDecrypt. java
project-4a.cleartext

This assignment is due on October 11/12, at the start of lab

	Cryptography
	The Caesar Cipher
	Your tasks
	How to submit your work

