
INTRODUCTION TO COMPUTER SCIENCE I
PROJECT 4C

Substitution Cipher, Take II

Onto the last step, where you will do a bit of cryptanalysis—code breaking!

1 Frequency Analysis
In part a, when you lacked a key for the Caesar cipher, you simply tried all of the possible keys.
Since the number of keys was small, it was just a matter of time before this brute force attack—a
simple form of cryptanalysis—was successful.

However, what about the substitution cipher that we used for Project 4b? Would a similar brute
force attack, where each possible key was tried, work? In our implementation, the key k is repre-
sented by an int. Since each int is a 32-bit value, then there are 232 = 4, 294, 967, 296 distinct
keys to try.1 This number is far too large for us to perform a brute-force attack of the keys, so we’ll
have to try something different.

Luckily for us, it seems that all of the encrypted messages that we are using are straightforward
English text. Such a natural (human) language has tremendous regularities that we can exploit.
Specifically, we know that the letters used in English text are not used with uniform frequency.
Moreover, we know that the encryption method is simple substitution—that each cleartext char-
acter is replaced with the same ciphertext character throughout the message. By putting together
these observations, we can measure the frequency of each ciphertext character in order to deter-
mine which cleartext character it represents.

That is, we know that the vowel e occurs most frequently in English text. Therefore, if we
take a ciphertext created with a substitution cipher, and we find that the character r appears most
frequently, then we can deduce that r is the ciphertext charcater substituted for all cleartext e’s. If
we know the frequency of enough of the most frequently used English letters—where “enough” is,
say, the set of characters that account for, say, 3

4
of the text—then we can match the most frequently

used ciphertext characters from an encrypted message to their cleartext counterparts. Doing so, and
then partially decrypting the message by substituting our suspected cleartext characters for their
ciphertext counterparts, should show us enough of the message to fill in most of the rest of the
substitutions.2

An example: In order to see how this type of frequency analysis works, let’s try a simple exam-
ple. Assume here that we are using only the 26 uppercase alphabetic letters of the English alphabet
for both our cleartext and ciphertext messages. Furthermore, consider the following ciphertext:3

1And even this set of combinations in restrictive. If we used more bits to represent the keys, we could have at least
one key for each of the 256! ≈ 8× 10506—a staggeringly large number.

2There are some subtitutions that we may never figure out, simply because those substitutions are for characters
so infrequently used—perhaps not at all—that determining the cleartext-to-ciphertext correspondence is irrelevant for
cracking the code and reading the encrypted message.

3I have broken the message across multiple lines so that it fits on the page. However, the newline character is not
part of this alphabet, so the statistics presented below in the tables ignore these newline characters. That is, when you
count the characters, just imagine both the ciphertext and the cleartext as a single line of text.

1

https://www.cs.amherst.edu/~sfkaplan/courses/fall-2012/COSC-111/
https://www.cs.amherst.edu/~sfkaplan/courses/fall-2012/COSC-111/projects/project-4c-abc123.pdf
https://en.wikipedia.org/wiki/Cryptanalysis
https://www.cs.amherst.edu/~sfkaplan/courses/fall-2012/COSC-111/projects/project-4b.pdf


LRESLBBSYBYEXPBQFPKBETHQBPCB
FYKYLQRUFETHSYFYKYLQRUQXPCB
NFYTLIYBESSQBYERYHCXFYKYRYQFPCB
BLXRYPAYKETHXPCKRYPCB

Here is a table of the frequencies with which each ciphertext character occurs in the above ci-
phertext message:

character frequency
A 1

107

B 13
107

C 6
107

D 0
107

E 7
107

F 7
107

G 0
107

H 4
107

I 1
107

J 0
107

K 6
107

L 6
107

M 0
107

N 1
107

O 0
107

P 8
107

Q 7
107

R 7
107

S 5
107

T 4
107

U 2
107

V 0
107

W 0
107

X 5
107

Y 17
107

Z 0
107

To make this table more useful, we reorder it by decreasing frequency:

2



character frequency
Y 17

107

B 13
107

P 8
107

E 7
107

F 7
107

Q 7
107

R 7
107

C 6
107

K 6
107

L 6
107

S 5
107

X 5
107

H 4
107

T 4
107

U 2
107

A 1
107

I 1
107

N 1
107

D 0
107

G 0
107

J 0
107

M 0
107

O 0
107

V 0
107

W 0
107

Z 0
107

Finally, here is the table of frequencies for the cleartext characters used to form the original
message, also sorted by decreasing frequency:

3



character frequency
E 17

107

T 13
107

O 8
107

A 7
107

H 7
107

M 7
107

S 7
107

I 6
107

R 6
107

U 6
107

L 5
107

P 5
107

D 4
107

N 4
107

Y 2
107

G 1
107

V 1
107

W 1
107

B 0
107

C 0
107

F 0
107

J 0
107

K 0
107

Q 0
107

X 0
107

Z 0
107

By matching up these tables, we can substitute the cleartext characters for the ciphertext ones.
For example, replace each Y with an E, each B with a T, and so on. When we do so, we will end
up with the cleartext message:

IMALITTLETEAPOTSHORTANDSTOUT
HEREISMYHANDLEHEREISMYSPOUT
WHENIGETALLSTEAMEDUPHEREMESHOUT
TIPMEOVERANDPOURMEOUT

Warning: It is terribly important to observe that (a) these frequencies are not those of normal
English text, and (b) this table of cleartext frequencies matches the ciphertext table of frequencies
exactly, which is utterly unrealistic. In dealing with real ciphertexts, the frequencies of the most
used characters will match reasonably well, but not exactly, and sometimes will be slightly out
of order. Worse, this technique is harder to apply to short messages, where the frequencies don’t
match well because so few characters are used. However, for your use of this technique, the
correspondence of frequencies are good enough to crack the message.

4



2 Your tasks
Once again, you will need some code with which to get started. Follow these steps:

1. Login to remus/romulus.

2. Change into a your directory for this project:

$ cd project-4

3. Copy a few files from a directory of mine:

$ cp ˜sfkaplan/public/COSC-111/project-4c/* .

4. List your files, which should include:

$ ls
project-4c.ciphertext 4c-sample.cleartext ForcedSub.class
MakeMap.class CountFrequency.java

Write the frequency counter: Use Emacs to open CountFrequency.java. As usual,
main() is already written and should not be changed.
CountFrequency.java also contains the beginnings of two more methods: count() and

printSorted(). Fill in the body of each of these methods, following the guidance given by the
comments that begin FIX ME. The first method, count(), must determine how many times each
character occurs in a given character array; the second method, printSorted(), must print the
frequency of each character’s use, by decreasing order of frequency. This latter method should call
on the final, fully written method, printLine(), to do the actual printing of a given character
and its frequency.

Use the frequency counter: Once you have written the frequency counter, you must use it to
measure the frequencies with which characters occur in both a sample of plaintext and a cipher-
text for which you have no key.4 Specifically, project-4c.ciphertext is the ciphertext
you must crack, and 4c-sample.cleartext is meant to provide a baseline for frequency of
character. So, to use your program on each:

$ java CountFrequency 4c-sample.cleartext 4c-sample.frequencies
$ java CountFrequency project-4c.ciphertext project-4c.frequencies

4To make matters easier, the sample cleartext and the ciphertext are largely identical, thus making the frequencies
almost exactly match. In real cryptanalysis of this kind, a bit more effort is required to account for fluctuations in
character use.

5



Go ahead and open these two new files, project-4c.frequencies and 4c-sample.frequencies,
to see which characters occur with what frequencies. Each file will look something like this:

32 (<space>) = 0.1833944648216072
116 (t) = 0.0713571190396799
105 (i) = 0.051683894631543846
110 (n) = 0.048349449816605536
10 (<line feed>) = 0.04701567189063021

Each line shows the frequency information for a single character through a given file. Specifi-
cally, the information shown is:

1. Character number: The first value is an integer that shows, in numeric form, the underlying
value of a given character. For example, if the character in question is A, then the number
shown here would be 65.

2. Character/character name/octal number: Between parentheses, the actual character it-
self, as normally printed, although with a few exceptions. Some characters are whitespace,
providing space between other, normal characters. For these—the space, tab, line feed, and
carriage return characters—the name of that character is provided between angle-braces
(<>). Other characters are unprintable control characters. These may appear with the carat
prefix (e.g., ˆG for control-G), or as an octal value (e.g., \211, which is character number
2358 = (2× 82) + (3× 81) + (5× 80) = 128 + 24 + 5 = 15710).

3. Frequency: Following the equals sign, the floating-point value provided is the frequency
with which that character occurred in the input. These values are fractions of the total. That
is, if the total number of characters in a file is k = 1, 000, and of those, kA = 200 is the
number of occurrences of the character A, then the frequency shown for that character is
kA
k

= 250
1,000

= 0.25.

You will notice, when comparing your two frequency files, that the list of decreasing frequencies
nearly match, strongly suggesting which ciphertext characters (shown in the
project-4c.frequencies file) should be replaced by which cleartext characters (shown in
4c-sample.frequencies).

Creating a ciphertext-to-cleartext map: I have provided a program that will use a pair of fre-
quency files to create a substitution map—a file that determines which charcater should be replaced
with which other character in performing an encryption/decryption substitution. That is, this file
allows you to explicitly dictate the values in the map that you normally, when using a substitution
cipher, generate with a random permutation. This file reads the character number from each line of
two frequency files, and then pairs them up. So, if you were to run this program, named MakeMap,
on your two frequency files, like so . . .

$ java MakeMap project-4c.frequencies 4c-sample.frequencies 4c.map

. . . then you can open the newly created 4c.map file with Emacs and see . . .

6

http://en.wikipedia.org/wiki/Octal


77 65
137 32
16 105
...

Specifically, each line in the file contains two numbers that specify how one character should be
substituted for another:

1. Original character number: The underlying number of some character that may occur in a
file. For example, the first line shown above specifies character number 77 (which represents
the character M) as the original character.

2. Substitute character number: The underlying number of a character that should be used to
replace the original character wherever it occurs in some file. Again using the first line of the
above, the second number listed is 65 (also known as the character A). Thus, taken together,
this line specifies that each occurrence of an M in some original file should be replaced with
an A.

Applying the map to the ciphertext: Now that you’ve measured the frequency of the ciphertext
message and the sample cleartext message, and then constructed a map of ciphertext-to-cleartext
characters based on those frequencies, it is time to use that map to decrypt the ciphertext. I have
provided another small program, ForcedSub, that performs a character-by-character substitution
based on a given map. You can run the program like so:

$ java ForcedSub project-4c.ciphertext project-4c.cleartext 4c.map

This program will use the given substitution map (from 4c.map) and then replace each origi-
nal/ciphertext character in project-4c.ciphertextwith its corresponding substitute/cleartext
character to create project-4c.cleartext. Thus, if your frequency measurements were per-
formed correctly in your CountFrequency program, then you should be able to read
project-4c.cleartext. Note that the instructions ask you to create a new file: name it
message-source.cleartext and, when you encrypt it, call the encrypted version
message-source.ciphertext.

Notice, however, that the recovery of the cleartext message is likely to be imperfect: the frequen-
cies of the characters don’t quite match, and the substitution ordering may be slightly off. The
message is likely to be readable, and that’s good enough to follow the directions in the decrypted
file. For your own edification, you may want to open 4c.map and change a few entries to im-
prove the decryption performed by ForcedSub.5 However, this task is optional for the curious
who wish to delve more deeply into how this form of cryptanalysis works.

5If you attempt this task, you may wish to consult a table of ASCII character encodings so that you can determine
which entries to change.

7

http://en.wikipedia.org/wiki/ASCII


3 How to submit your work
Once again, use the cs111-submit command:

cs111-submit project-4c CountFrequency.java
message-source.ciphertext

Part C is due on Thursday/Friday, October 25/26, at the start of lab

8


	Frequency Analysis
	Your tasks
	How to submit your work

