INTRODUCTION TO COMPUTER SCIENCE I
PROJECT 5A Fancy array footwork

1 Sorting and searching code
First, login, create a directory, and grab some code:

S mkdir project-5
S cd project-5
$ cp —-v “sfkaplan/public/COSC-111/project-5a/+

Use Emacs to open and examine Sort It . java. This program contains a pre-written main ()
method, and the beginnings of the following two methods that you must complete:

e public static int search (int[] array, int value)
Search for an entry in array that contains value, and return the index at which it was
found; return -1 if value does not occur in array.

e public static void sort (int[] array) Order the elements in array from
least to greatest.

Running the program: The SortIt program is run something like this:
$ java SortIt 100 -33
The program performs a number of steps:

1. It calls on a method in Tools.class to create an array of mostly random values; I say
mostly because one of those values actually has a prescribed value. The length of this array
is provided by the user at the command line.

2. It then calls on sort () to sort the array.

3. A Tools method is then used to verify that the sort is correct (printing error messages if it
is not).

4. Finally, it uses search () to find the index of a particular value—one that the user gets to
specify at the command line. The location of this value is then printed.

1.1 How to write and test your code

I would approach this program in the following sequence:

1. Write the sorter: Ignore the search () method at first—just have it return —1 all of the
time so that it compiles. In the meantime, complete sort () and any supporting methods
that you create for it.


https://www.cs.amherst.edu/~sfkaplan/courses/fall-2012/COSC-111/
https://www.cs.amherst.edu/~sfkaplan/courses/fall-2012/COSC-111/projects/project-5a.pdf

. Add code to print the array: There is, among the Tools, a helpful method for debugging
that prints the contents of the array. Insert call(s) to it in your main () method so that you
can see the results of your sorting. For example, inmain ():

sort (values) ;
Tools.printArray (values); // <- inserted
Tools.verifySort (values);

. Test the sorter: Compile your code, and then invoke the program. At first, specify very
small lengths (and put a dummy value in the place of the value for which the program
searches, since that method is not yet written):

$ java SortIt 1 O
[0] = 24541
0 not found in the array

$ java SortIt 3 0

[0] = 5068

[1] = 7035

[2] = 24541

0 not found in the array

Use increasing lengths and check, visually, that the values seem to be in order.

. Write the searcher: Now that your sorting works, complete the search () method to
perform a search.

. Insert a known value: Modify main () again to set one of the values in your array to some
constant before it is sorted. That is:

int[] values = Tools.createValues (arrayLength);
values[0] = 12345; // <— inserted
sort (values) ;

. Test the searcher: Run your program, searching for the known value:

java SortIt 10 12345
] = 5068
] = 7035
] = 8115
] = 12345
] = 28338



[5] = 54270
[6] = 77788
[7] = 92985
[8] = 93844
[9] = 97967
Found: [3] = 12345

7. Remove the debugging code: Remove the lines added to main () that print the array and
that insert a known value. Your program is likely correct now, so you don’t need those any
longer.

2 Finding a particular value
Now that you have a working program, it’s time to really put it to use. In particular, you need to
search an array of 50 million items for a particular value. What value? Here’s the clue:

Find the Stone stone. On it is written the name of a fraternity. Take those greek letters,
and replace them with their numeric position in the greek alphabet. For example, if
the greek letters were Sigma Xi (XZ), then those are, respectively, the 18" and 14"
letters of the greek alphabet. Now contatenate those numbers (e.g., 18 and 14 become
1814). That is the value for which you much search.

So, if 1814 were the number that you must find (it isn’t), then you would do the following:
$ java SortIt 50000 1814

Your program, although it will take a few moments to run, should find that value and show you
the position number at which that value was found in the sorted array of 50,000 values. Hold onto
that position number!

3 Finding part B

To get to part B, visit the following link:

https://www.cs.amherst.edu/ sfkaplan/courses/fall-2012/C0OSC-111/
projects/project-5b—-XYZ.pdf

Of course, XY Z should be replaced with the position number at which the particular value, above,
was found.
4 How to submit your work

Use the cs111-submit command:

cslll-submit project-5a SortIt.java

Project 5a is due on Nov 1/2, at the start of lab



	Sorting and searching code
	How to write and test your code

	Finding a particular value
	Finding part B
	How to submit your work

