
INTRODUCTION TO COMPUTER SCIENCE I
PROJECT 6

Sudoku!

1 The game of Sudoku
Sudoku is a popular game giving crossword puzzles a run for their money in newspapers.1 It’s a
game well suited for computers because it is a matter of finding legal placements for numbers on
the board; it is an example of a constraint satisfaction problem.

The game: Sudoku is typically played on a 9 × 9 grid. Initially, a few of the cells of that grid
contain a numbers, all integers between 1 and 9. The goal for the player is to fill in the remaining
cells of the grid, also with integers between 1 and 9, given the following constraints:

• Each value (1 through 9) must appear exactly once in each row.

• Each value (1 through 9) must appear exactly once in each column.

• Each value (1 through 9) must appear exactly once in each 3 × 3 sub-grid, where the 9 × 9
board is divided into 9 such sub-grids.

A valid Sudoku game begins with initial numbers that, when combined with the constraints
above, admit to exactly one complete solution. That is, the initial numbers cannot make it impos-
sible to fill in the board legal, nor can they allow multiple solutions.

2 Your assignment

2.1 Copying files from my directory
You must copy some files from my directory to get started on this project. To do so, follow these
steps:

1. Login to remus/romulus and open a shell.

2. Create a project-6 directory and change into it.

3. Issue the following command from within your project-6 directory:2

cp -r ˜sfkaplan/public/COSC-111/project-6/* .

If you look at your directory (use the ls -l command), you will see that there is one Java class
file (Support.class) and three Sudoku board files (e.g., medium.board).

1When students stop knowing what newspapers are, I will know that I’m old and should retire.
2Remember that this copying step should be performed only once. If you do it again later, you will clobber your

own work with a fresh copy of my skeleton code. Don’t do that.

1

https://www.cs.amherst.edu/~sfkaplan/courses/fall-2012/COSC-111/
https://www.cs.amherst.edu/~sfkaplan/courses/fall-2012/COSC-111/projects/project-6.pdf
http://en.wikipedia.org/wiki/Sudoku
http://en.wikipedia.org/wiki/Constraint_satisfaction_problem


2.2 The overall goal
You need to write a program, named Sudoku (written, of course, in a file named Sudoku.java),
that can be run like this:

(remus)˜/project-6> java Sudoku medium.board
Initial board:
0 0 0 0 0 0 0 0 7
0 0 0 0 7 0 3 0 8
0 0 0 5 0 4 0 6 0
0 0 0 0 0 0 0 8 0
7 1 0 0 9 0 0 0 5
8 0 0 0 1 5 9 0 0
3 0 0 0 0 0 0 0 0
0 0 8 9 4 0 6 3 0
0 2 7 6 0 3 0 0 0
Final board:
6 8 1 2 3 9 5 4 7
2 4 5 1 7 6 3 9 8
9 7 3 5 8 4 2 6 1
5 9 4 7 6 2 1 8 3
7 1 6 3 9 8 4 2 5
8 3 2 4 1 5 9 7 6
3 6 9 8 2 1 7 5 4
1 5 8 9 4 7 6 3 2
4 2 7 6 5 3 8 1 9
Correct solution!

That is, the file medium.board contains a Sudoku puzzle (with 0 values where there would
normally be blank entries). Go ahead, open it in Emacs and look. Your Sudoku program must
read that board into a two-dimensional array of int. It must then solve the puzzle. That’s all there
is to it! Well, there are a few more details that you should know about. . .

2.3 Importing needed classes
Since your program must use a number of special objects for opening and reading files (and catch-
ing exceptions that may be thrown by the methods in those objects), then you must tell the compiler
about these object types—classes, using Java terminology. We have needed to do this kind of im-
porting in past projects, but those statements were provided in the partial code that you obtained
from me. Here, you are writing the Sudoku program from scratch, so you must declare these
imports.

An import statement must come before you declare the beginning of the class/program,
right at the very top of your Sudoku.java file. There are a number of importations needed in
your program. One is for the Scanner class, and the others—for File, FileNotFoundException,
and the like—are all part of a collection of classes used for input/output functions, or I/O. Rather
than list each one-by-one, we can use a wildcard—a symbol that stands in for a number of possible

2



class names. Specifically, the use of the asterisk (*) is our way of telling the compiler to include
a group of classes; in this case, the entire set of Java I/O classes. So, your Sudoku.java file
should begin like this:

import java.util.Scanner;
import java.io.*;

public class Sudoku {
...

2.4 Using the Support methods
There are two methods in the Support class that you must use in your program. To use each, you
call them from your Sudoku program by using the prefix Support. (including the dot!). That
is, to call, for example, printResults() (documented below), then you would write the call
as Support.printResults(isSolved, board).

• public static void printAndVerifyInitialBoard (int[][] board, String
initialStatePath)

When your program has read the initial state of the board from its file into a two-dimensional
array of int, it must call this method, passing both the 2D array and the file name from
which it was created. This method will print the initial board; it will also check the 2D array
against the file, verifying that the array is correct.

• public static void printResults (boolean isSolved, int[][] board)

After your program has (tried) to solve the puzzle, it must call this method. The first pa-
rameter, isSolved, should indicate whether your solver believed that it solved the puzzle.
The second parameter, board, should be the 2D array containing the solved puzzle. This
method will print the 2D array that is passed. Moreover, if isSolved is true, then this
method will verify that the puzzle is indeed solved. If isSolved is false, this method
will determine whether a solution should have been found.

2.5 Suggestions for a progression
Do not try to write all of this code at one. Break it into pieces, program and test each piece, and
then move onto the next one. This incremental approach will reduce your programming and your
debugging time. Here is a suggestions for how to go about this problem:

1. Read the board files: Write a method capable of reading a board file and returning its
contents as a 2D array of int. Test this method by calling it, and then passing its result to
Support.printAndVerifyInitialBoard() to see if it worked correctly.

2. Test legal placements: Write a method that can determine whether the placement of a
particular value in a particular position on the board is legal. That is, does placing a value v

3



in row r and column c violate the rules because v already exists in r, in c, or in the sub-grid
to which (r, c) belongs? Test this method by reading in a board file and then placing values
that are known to be legal and illegal in particular positions, calling your tester method on
each to see if it evaluates the situation correctly.

3. Write the solver: With an initial board loaded and a method that can determine whether the
placement of a value into a blank location on the board is valid, you can now write the actual
solver method. Use Support.printResults() to determine whether your solver is
doing its job correctly.

2.6 Testing your code
There are three Sudoku board files:

• easy.board—The easiest of the puzzles to solve. Start with this one.

• medium.board—Fewer initial values are provided than in easy.board, making the
search a bit harder.

• evil.board—A minimal number of values are provided. This solution requires back-
tracking to work correctly. (That is, certain values will be placed, but their incorrectness will
not be evident until much later in the search.)

So long as you call the Support methods at the right times, you should be able simply to use
these three provided puzzles to test and debug your code. Feel free, also, to find other puzzles and
make your own Sudoku board files.

2.7 Extra challenges
The following are possible extensions to this assignment that you may pursue for additional credit.
To be clear, the effort for one or both of these challenges substantially exceeds the credit that each
would earn you. Although you may earn some small additional credit for (nearly) completing any
part of these, you should take them on because you find the challenge compelling. You should also
know that there will be little guidance on how to solve these problems. To devise a solution, plan
on spending some significant time and effort in puzzling it out.

Creating a puzzle generator: The core of this assignment is creating a program that solves an
existing Sudoku puzzle. But how do those puzzles get created? We want an algorithm, and then
code that implements that algorithm, to create a new Sudoku puzzle. Your task is simply to create
such an algorithm and then to program it.

If you manage to develop such a puzzle generator, you can then take on the additional challenge
of making it optimal: generate puzzles that contain the smallest number of initially provided values
possible. xxx

4



Variables sizes and dimensions: Just as we have used the 4 × 4 “kids” Sudoku puzzle during
lectures in addition to the 9 × 9 standard puzzle, the game is easily defined for any k × k config-
uration for all integer k > 0.3 So, as a first step, generalize your code to read and solve k × k
Sudoku puzzles (again, for integer k > 0).

Having made this change, now consider that Sudoku need not be only a 2-dimensional game.
Consider, for starters, a 3-dimensional Sudoku. Here, there are not just horizontal rows and vertical
columns, but also depth-based tunnels.4 Whereas the standard puzzle is a 32 × 32 arrangement, we
could consider, say, a 33 × 33 × 33 = 27 × 27 × 27 puzzle, one would need to place the digits 1
through 27 such that each digit appears exactly once in each:

1. row

2. column

3. tunnel (third dimensional line from front to back)

4. subcube (each cube created by dividing the 3-dimensional cube into 81 separate 3 × 3 × 3
cubes.

3 How to submit your work
Use the cs111-submit command:

$ cs111-submit project-6 Sudoku.java

If you complete any portion of the extra credit projects, submit them something like this:

$ cs111-submit project-6-extra SudokuMaker.java SudokuMultiSize.java

This assignment is due on Nov 29/30d, at the start of lab

3There are also configurations of the puzzle for non-squares (e.g., 3× 4), but we can skip those arrangements here.
4Perhaps not the best choice of name for this third dimension, but it will do.

5


	The game of Sudoku
	Your assignment
	Copying files from my directory
	The overall goal
	Importing needed classes
	Using the Support methods
	Suggestions for a progression
	Testing your code
	Extra challenges

	How to submit your work

