
Introduction to Computer Science I
Spring 2010

Sample mid-term exam — Answer key

1. [Question:] (15 points) Consider the code fragment below. Mark each location where an
automatic cast will occur. Also find each location where an explicit cast must be inserted for
the code to compile successfully, and correct the line with that explicit cast included. [Note:
Be aware that some lines may require more than one cast!]

byte b = 13;

int i = b;

short s = i;

int i2 = s + i;

short s2 = s + 3;

boolean b2 = (i < s);

[Answers and discussion:] People frequently were confused about which casts were au-
tomatic and which had to be forced/explicit. Many people indicated that a particular line
involved an automatic cast, but they did not make clear to which portion of the expression
that cast would apply, thus losing some credit. We will address one line at a time:

• byte b = 13;

No cast is performed or needed here. The compiler identifies 13 as a valid byte constant,
and so this is a case of assigning a byte value into a byte space. If you believed that the
13 would be considered an int, then you would have to insert a forced cast to receive
partial credit. Claiming an automatic cast here is not sensible.

• int i = b;

An automatic cast on b occurs here, converting it from a byte to an int.

• short s = (short)i;

A forced cast must be inserted on i to make that int value fit into a short space.

• int i2 = s + i;

In order to add a short to an int, the compiler will perform an automatic cast on s,
converting it to an int so that addition is really performed on two int values.

• short s2 = (short)(s + 3);

Two casts must occur here. First, addition is only performed on int values. So, s is
automatically cast to an int. Second, to assign the result of the int addition into a
short space, a forced cast must be performed on the addition expression.

• boolean b2 = (i < s);

Comparisons must be performed on like types. Therefore, c is automatically cast to an
int so that it may be compared to i. As an alternate answer, one could insert a forced
case on i, making it into a short, thus comparing two short values.

1



2. [Question] (15 points) Consider the Java code below and answer the questions that follow.

System.out.print("Enter a value for a: ");

int a = keyboard.nextInt();

System.out.print("Enter a value for b: ");

int b = keyboard.nextInt();

if (a < 0) {

a = -a;

}

int i = 0;

while (i < a) {

int k = 0;

int j = 100;

while (j >= b) {

k = j * 2;

System.out.print(k);

System.out.print(’-’);

System.out.println(j);

j = j - 1;

}

k = k + 1;

i = i + 1;

}

(a) What is the output of this code if the user enters 2 for a and 98 for b?

(b) What is the output of this code if the user enters −3 for a and 100 for b?

[Answer] For each case:

(a) 200-100

198-99

196-98

200-100

198-99

196-98

(b) 200-100

200-100

200-100

2



3. [Question] (10 points) The following method contains an error that will prevent it from
compiling. Find and correct it.

public static int quux () {

int x = 0;

while (x <= 0) {

System.out.print("Enter a value: ");

x = keyboard.nextInt();

if (x < 0) {

int y = x;

} else {

y = -x;

}

}

return y;

}

[Answer] The scope of y is too narrow. It ceases to exist at the closing brace before the else

keyword, and thus the use of it in the else branch and in the return statement outside of
the while loop is invalid. To fix it, x must be declared before the while loop, and its previous
declaration must be turned into a mere assignments:

public static int quux () {

int x = 0;

int y = 0;

while (x < 100) {

System.out.print("Enter a value: ");

x = keyboard.nextInt();

if (x > 100) {

y = x;

} else {

y = 2 * x;

}

};

return y;

}

3



4. [Question] (30 points) Write a method named printTable that accepts a height and a
width as parameters and then prints a table of those dimensions, where the table follows the
following pattern:

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

The above table is the result of calling printTable(4, 5).

[Answer] Although there are many ways to write a method that perform this task, here is
one of the simplest:

public static void printTable (int height, int width) {

for (int row = 1; row <= height; row++) {

for (int column = 1; column <= width; column++) {

System.out.print((row * column) + " ");

}

System.out.println();

}

} // end printTable

4



5. (30 points) We want to write a program that allows the user to enter a list of positive numbers
and then prints out the mean number from that list. That is, if the user enters the values 7,
4, 3.5, and 11.5, then the mean is 7+4+3.5+11.5

4 = 26
4 = 6.5.

The main method of this program is:

public static void main (String[] args) {

double x = getMeanFromUser();

System.out.println("Max = " + x);

}

Write the method getMeanFromUser. The user should be able to enter an arbitrary number
of positive values. As soon as the user enters a non-positive value, the program should accept
that value as an indication that the user has no more values to enter. After the user has
entered all of her numbers, the method should return the mean value entered. Do not worry
about a user that enters non-numeric values.

[Answer] Once again, there is more than one way to skin a cat, but here is one straightforward
solution:

public static double getMeanFromUser () {

double userEntry = 0.0;

double sum = 0.0;

int numberEntries = 0;

while (userEntry > 0.0) {

System.out.print("Enter next value (or a negative value if finished): ");

userEntry = keyboard.nextDouble();

if (userEntry > 0.0) {

sum = sum + userEntry;

numberEntries++;

}

}

return sum / numberEntries;

} // end getMeanFromUser

5


