
SYSTEMS I — LAB 6
mini-k assembly code

We move from machine-code programming to assembly programming, writing a program’s se-
quence of instructions as text and then using an assembler to translate, automatically, that text
into the appropriate sequence of machine-code instructions. Moreover, we are going to advance
from programs that progress from one instruction to the next in a linear sequence to programs that
may branch, using instructions that conditionally use or re-use certain sequences of instructions by
jumping forward or backward in the sequence of instructions.

1 Using the assembler
For the previous assignment, you hand-wrote your instructions in assembly code—the text-based,
human-readable version—and then manually converted each instruction into the corresponding
machine code—the binary encoding used by the processor. You entered the machine code into an
image file with the hexedit tool, and then ran the mini-k processor simulator (a.k.a., k-simulator)
with that image file, thus loading that machine code into RAM before the processor began its fetch-
decode-execute cycle.

We will introduce a new tool for this lab, making the programming task a simpler one, and
thus allowing you to approach more complex programming problems. The assembler translates
assembly code into machine code automatically, transforming the text-based expression of each
instruction into the binary encoding used by the processor. Our mini-k assembler is a handy tool
that will help you perform the assignments provided below, in Section 2.

1.1 Additional capabilities on an assembler
The primary task of an assembler is to translate text-based instructions into machine code. How-
ever, it also provides two additional capabilities to ease the programming task. Specifically:

1. Pseudo-instructions: The assembler now recognizes two pseudo-instructions that it trans-
lates into some number of real instructions that carry out the equivalent work. The SA
pseudo-instruction allows you to specify the full word to be loaded into the accumulator; it
generates a pair of SUA/SLA instructions that load that word into the accumulator in two
steps.

Similarly, the new LLAC pseudo-instruction—Load Label address into the ACumulator—
allows you to specify a label whose corresponding loading address is loaded into the ac-
cumulator. This pseudo-instruction also results in an SUA/SLA instruction pair to set the
accumulator in two steps.

Examples of how to use these instructions are shown in Section 1.2.

2. Labels: Any statement (that is, any instruction or constant) can be preceeded by a label—a
name that can serve as a stand-in for the loading address (the location in main memory)
of a statement. That address to which that label corresponds can then be loaded into the
accumulator using the LLAC psuedo-instruction described above. That value can then be
used with a LOAD, STOR, BRIS, or BRIC instruction (for example).

1

https://www.cs.amherst.edu/~sfkaplan/courses/2013/fall/COSC-161/index.html
https://www.cs.amherst.edu/~sfkaplan/courses/2013/fall/COSC-161/assignments/lab-6.pdf


1.2 An example
To get started with using the assembler, you must first write some assembly code. Here, we will
walk through a small example of writing a small program in assembly, using the assembler to
convert it to machine code, and then running it with the simulator.

1. Login to remus/romulus: As with Lab 5, begin by logging into remus/remus—the
college’s UNIX servers. Open a terminal window to obtain a shell prompt.

2. Create a directory: Make a directory for this project and change into it. Specifically:

$ mkdir lab-6
$ cd lab-6

3. Copy a sample assembly program: From the public directory for this assignment, copy a
sample assembly program and open it in emacs for examination:

$ cp ˜sfkaplan/public/COSC-161/lab-6/add-two-from-memory.asm .
$ emacs add-two-from-memory.asm &

You will notice that it contains a program similar to the one from Lab-5, loading two values
from memory and summing them, and then storing them at address 0xFF. Notice also that
the code has many comments, some on their own lines, some trailing the lines of code
themselves, always delineated by the semicolon. Finally, notice that you may specify both
instructions and then constants. Determining the address of the constants was achieved in
this program by counting the instructions, one byte each.

2

https://www.cs.amherst.edu/~sfkaplan/courses/2013/fall/COSC-161/assignments/lab-5.pdf


4. Assemble the program: Use the assembler to turn this assembly code into an executable
image file:

$ k-assembler add-two-from-memory.asm add-two-from-memory.img
Attempting to parse the source assembly code:
[0x??]: LLAC x
[0x??]: COPY %rD
[0x??]: LOAD %rA %rD
[0x??]: LLAC y
[0x??]: COPY %rD
[0x??]: LOAD %rB %rD
[0x??]: ADD %rA %rB
[0x??]: COPY %rC
[0x??]: SA 0xff
[0x??]: COPY %rD
[0x??]: STOR %rC %rD
[0x??]: LOAD %rD %rD
[0x??]: HALT
[0x??]: 0x03
[0x??]: 0x15
Done parsing.

Assigning load addresses to labels...done.

Showing the parsed instructions and constants:
[0x00]: SUA 0x01
[0x01]: SLA 0x00
[0x02]: COPY %rD
[0x03]: LOAD %rA %rD
[0x04]: SUA 0x01
[0x05]: SLA 0x01
[0x06]: COPY %rD
[0x07]: LOAD %rB %rD
[0x08]: ADD %rA %rB
[0x09]: COPY %rC
[0x0a]: SUA 0x0f
[0x0b]: SLA 0x0f
[0x0c]: COPY %rD
[0x0d]: STOR %rC %rD
[0x0e]: LOAD %rD %rD
[0x0f]: HALT
[0x10]: 0x03
[0x11]: 0x15

The first repetition of the code is the result of parsing—attempting to read each statement.

3



If a statement is printed here, then it was read by the assembler without error if an error
message appears or the assembler reports that it is done parsing, then it failed to parse
the first statement not shown in this output. Notice that, on the leftmost side of each line, the
loading address—the location in main memory into which each statement will be copied—
appears as [0x??]. This is the assembler’s way of indicating that the loading addresses
have not yet been calculated.

Having read the entire assembly code program, the assembler then performs a few critical
tasks. First, it calculates the loading addreses of statement; second, assigns the correct ad-
dress to each label; third and last, it creates the real instructions for each psuedo-instruction.
For example, each SA psuedo-instruction is converted into a pair of real SUA and SLA in-
structions.

After assigning loading addresses and create real instructions for the psuedo-instructions, the
assembler displays a second repetition of the code. You should therefore see the sequence
of loading addresses at the leftmost portion of each statement (e.g., [0x0b]). Also, each
psuedo-instruction will be replaced with its corresponding real instructions. Finally, the
assembler will emit the machine code into the image file specified on the command line.

5. Run the program on the simulator: Use the executable image, with all of its machine code
and constants as produced by the assembler, on the simulator:

$ k-simulator add-two-from-memory.img

You will see, in a form that is now familiar, the result of running this program on the simu-
lated processor.

2 Your assignment

2.1 Summing an array
Write a program for which there are a set of constants that immediately follow the instructions.
Specifically, imagine an array of constants, defined as:

• A single value–let us call it n—that occupies the first memory location after the final ma-
chine code instruction to be loaded into main memory, that specifies the number of values to
follow, also known as the length of the array, and

• The n values themselves that occupy the next n memory locations. These values could be
any arbitrary two’s complement integers; you know only that there will be n of them.

Your program should sum the array of n values and store the sum at main memory address
0xff before the program completes.

4



2.2 Producing the Fibonacci sequence
Once again, assume that your program will have a single constant, n, that is stored at the first main
memory address after the last machine code instruction instruction. Assume that this n specifies
the nth Fibonacci number, defined as:

F (n) =

{
n if n < 2

F (n− 1) + F (n− 2) if n ≥ 2

Write a program that loads n from this location. It should then, starting at address 0x80, place
F (0), followed by F (1) at address 0x81, F (2) at 0x82, up to F (n) at address 0x80 + n. You
may assume that n ≥ 2.

3 How to submit your work
We will be using the cs161-submit command to turn in programming work. Specifically, you
should submit your completed sum.asm and fib.asm, like so:

cs161-submit lab-6 count.asm fib.asm

This assignment is due on Nov 07/08, at the start of lab

5

http://en.wikipedia.org/wiki/Fibonacci_number

	Using the assembler
	Additional capabilities on an assembler
	An example

	Your assignment
	Summing an array
	Producing the Fibonacci sequence

	How to submit your work

