
INTRODUCTION TO COMPUTER SCIENCE I
PROJECT 1

Arithmetic and Basic Input/Output

For our first project, you will get familiar with the tools used to write, compile, and execute
programs.1 You will do so by writing small programs that read numbers that the user types with
the keyboard, performs arithmetic on those numbers, and prints a result to the screen. Along the
way, you may have to do a bit of scurrying about campus. . .

1 Your first Java program: Printing text messages

1.1 Getting started in the lab
The following steps will lead you through your first Java program. Here, the goal is to get used to
the tools involved in writing, compiling, executing, and debugging these programs. After you get
this pre-written and simple program working, you will then need to write a program of your own.

1. Login to your workstation: Our lab is full of basic Windows desktop computers.2 These
are run by our Information Technology department, and you must begin by logging into them
using your college username and password.

2. Login: The computer systems that we will use for our projects are romulus.amherst.edu
or remus.amherst.edu, (heretofore, remus/romulus), which are UNIX (Linux)
systems. To use these systems, you must login to them from your workstation using Xming,
software that allows you to connect graphically to these servers. To do so, follow the Win-
dows Xming instructions that describe how to use this software on the Windows machines in
Seeley Mudd 014. Notice that this page also describes how to install and use Xming on your
own computer if it is a Windows machine as well. If you have a Mac, follow the Mac X11
and ssh instructions.

Once you have logged into remus/romulus, you will be presented with a shell—a text
window with a prompt at which you can type commands to the system. The shell is the place
from which you will direct the system to run the program that allows you to edit your source
code, to perform the compilation of your source code, and to execute your programs.

3. Make a directory: When you first login, you will be working in your home directory—
the UNIX analog of your My Documents folder. Within this directory, you should make a
subdirectory (a folder) for your work for this lab. Specifically, enter the following command
to create and then change into that subdirectory:

1If you don’t understand these terms—particularly compile and execute—fear not! Such terms will be defined and
used in examples soon enough. In the meantime, the point is that you will write programs and then attempt to make
those programs “go”.

2The Computer Center and the Library also contain a number of Windows computers. They are configured identi-
cally to those in our lab, and so you can easily do your course work at those public Windows desktop computers.

1

https://www.cs.amherst.edu/~sfkaplan/courses/2013/spring/COSC-111/
https://www.cs.amherst.edu/~sfkaplan/courses/2013/spring/COSC-111/projects/project-1.pdf
https://www.amherst.edu/offices/it/
http://en.wikipedia.org/wiki/UNIX
http://en.wikipedia.org/wiki/Linux
https://www.amherst.edu/academiclife/departments/computer_science/computing/windows
https://www.amherst.edu/academiclife/departments/computer_science/computing/windows
https://www.amherst.edu/academiclife/departments/computer_science/computing/mac
https://www.amherst.edu/academiclife/departments/computer_science/computing/mac

$ mkdir project-1
$ cd project-1

4. Get some sample source code: Use the following command to obtain a sample Java source
code file, being careful to include the tilde (˜) before my username and the trailing space
followed by a period (.):

$ cp ˜sfkaplan/public/COSC-111/project-1/Howdy.java .

To ensure that you have copied the file into your project-1 subdirectory, use the follow-
ing command to list the files in the current directory, noting that the character following the
dash (-) is a lowercase letter L, and not the numeral 1:

$ ls -l

You should see an output that looks something like this:

total 4
-rw-r--r-- 1 sfkaplan sfkaplan 235 Jan 28 22:18 Howdy.java

5. Examine and modify the source code: Run Emacs, a programming text editor, to examine
the Howdy.java file. In the following command, be sure to include the trailing ampersand
(&), causing the text editor to run in the background—that is, to run while allowing you to
enter more commands:

$ emacs Howdy.java &

You will see a small program much like the one we wrote on the blackboard in class. In
fact, this program is simpler: it declares no variables and performs no arithmetic. Instead, it
merely prints a message to the screen.

You will easily find that, within the Emacs window, you can move around the source code
with the arrow keys, and change the file simply by typing in a normal fashion. The pull-down
menus allow you to save your file periodically and to exit the program. However, Emacs is
a complex program that is capable of a great deal more. To really start learning how to use
it, you should read this documentation/tutorial on using Emacs.

Once you have gotten somewhat comfortable with your new text editor, use it to add one
more line of text to what is printed on the screen. It doesn’t matter what text you add—just
have the program print something new and unique. Once you are done adding this additional
line of code, be sure to use the save command.

6. Compile: Now that you have changed the source code, you must translate it into a form
that the computer can execute. Leaving your Emacs window open, click over to your shell
window again. In it, use the following command to compile your source code:

2

http://en.wikipedia.org/wiki/Text_editor
https://www.amherst.edu/offices/it/help/software/unix/emacs

$ javac Howdy.java

In this case, no news is good news. That is, if the computer simply presents the shell prompt
to you after you issue this command, then the compilation succeeded. The compiler—
the javac program—will print messages into your shell window only if it was unable to
translate your program.

If you see such an error message, then you must have made some type of mistake in adding
your line of code to print one more line of text. Go back to your Emacs window and see if
you can spot your error. If you can, correct it, save the source code, go back to your shell
window, and issue the compilation command (as above) again. If the error persists, or if you
could not see what your error was in the first place, then ask for help.

7. Execute: Once you have successfully compiled your program, it is time to run it and see
what happens. Go to your shell window and issue this command:

$ java Howdy

Your program should (very quickly) print into your shell window the lines of text that your
source code indicated it should. If you don’t see the text that you expected, then go back to
your source code in your Emacs window, and see if you can spot your error. If you cannot
find the error, then ask for help.

Congratulations! You’ve (partially) written, compiled, and run a Java program! Although the
programs will get more complex, you will continue to use the write, compile, execute sequence
throughout. You can now close your Emacs window since you are done with this program.

1.2 Continuing your work after lab
When you finish your lab section, at which time you close your windows and log out, all of your
work is saved on the servers (remus and romulus). Therefore, no matter how and from whence
you connect to those servers, your files will be waiting for you, as you last left them.

Connecting from outside the lab: In order to continue your work, you must connect again to
one of the servers (remus or romulus). How you connect depends on what type of machine you
are using:

• Windows: If you are using one of the college’s public Windows computers (e.g., in the
Computer Center), then Xming is already installed on it. If, however, you are using another
Windows computer—for example, your own Windows laptop—then you must first install
Xming by following the instructions on the computer science support page for Windows
provided by our IT department.

With Xming installed, you should follow the instructions for connecting on that same IT web
page.3

3Although the web page indicates that Xming is for use only on campus, I believe that it works correctly and safely
from off-campus. Let me know if I’m wrong with that assertion.

3

https://www.amherst.edu/academiclife/departments/computer_science/computing/windows
https://www.amherst.edu/offices/it
https://www.amherst.edu/academiclife/departments/computer_science/computing/windows

• Mac: If you are using one of the college’s public Mac computers (e.g., in the Computer
Center), then the necessary software—X11, Terminal app, and ssh—are already installed. If
you are using another Mac, such as your own, then you may well have that software installed
already. In either case, the computer science support page for Macs provides instructions on
installing those software packages (if needed), as well as instructions on how to connect to
remus or romulus.

• Linux: If you have been adventurous to use Linux, I’ll assume that you know how to connect
to remus/romulus using tunneled ssh connections. If I’m wrong in that assumption, then
ask me for help.

Finding and opening your work: Once you are connected to one of the servers, you need only
enter one command to find your files and work with them again:

[sfkaplan@remus ˜]$ cd project-1

The cd command is used to change the current directory in which you are working; that is, it
moves you into the project-1 directory. Once you enter this command, you should see your
prompt change to read something like:

[sfkaplan@remus ˜/project-1]$

Here, the tilde (˜) indicates your home directory, which is the directory in which you begin when
you first login. After your use of the cd command, you see that you are now in the project-1
directory, which is itself within your home directory. If you now use the following command to
list the files in your directory, you should see something like the following:

[sfkaplan@remus ˜/project-1]$ ls -l
-rw-r----- 1 sfkaplan sfkaplan 500 Feb 7 16:55 Howdy.class
-rw-r----- 1 sfkaplan sfkaplan 423 Feb 7 16:55 Howdy.java
-rw-r----- 1 sfkaplan sfkaplan 415 Feb 7 16:55 Howdy.java˜
-rw-r----- 1 sfkaplan sfkaplan 1.2K Feb 7 16:55 StrangeMath.class
-rw-r----- 1 sfkaplan sfkaplan 944 Feb 7 16:55 StrangeMath.java
-rw-r----- 1 sfkaplan sfkaplan 917 Feb 7 16:55 StrangeMath.java˜

You will see the source code files (which end with .java) are just where you left them, ready
to be opened with Emacs. Moreover, the files that have a tilde (˜) appended are auto-saved copies
that are the result of Emacs saving a backup of your work every couple of minutes. Finally, the
compiled files with the suffix .class are the result of your use of the javac command; that
is, the translation from your source code into a format that the computer can run is stored in the
.class files.

At this point, you may resume your work from the point at which you left off. You may use
the emacs command just as you did in the lab to open and edit the source code; you may use
the javac command to compile (i.e., translate) your source code; and you may use the java
command to run your compiled programs.

4

https://www.amherst.edu/academiclife/departments/computer_science/computing/mac

Mistakes to avoid: There are a number of ways to make mistakes in using these servers, but
there are two particular steps that you should try not to commit.

1. Don’t recreate the directory: When you began the lab, you used the mkdir command
to create the project-1 directory. Having created that directory, you should not do so
again. The mkdir command should be used to make the directory exactly once per project.

2. Don’t re-copy the starting source code files: Again, when you began the lab, you used
the cp command to copy source code (i.e., .java) files from a directory of mine into your
project directory. You should copy those files only once. If you re-copy them a second
time, those copies will overwrite the work that you’ve done, eliminating your work from the
source code files.4

2 Your second program: User input and arithmetic
You are now going to write a program that reads a few values that the user of the program types
in, performs a few arithmetic operations on those values, and then prints the results to the screen.
This program will seem almost absurdly arbitrary—and in some sense, it is—but the purpose of
this program will become clear later.

2.1 Getting started
Because this program will do a few new things that we have not yet discussed in class, I am
providing some portions of the program. Much like your Howdy program, you will add the critical,
arithmetic instructions to the program, making it whole. You should begin by obtaining the initial,
partially written program by issuing the following command at your shell prompt, again being sure
to put the tilde (˜) and the trailing space () and period (.) in proper places as shown here:

$ cp ˜sfkaplan/public/COSC-111/project-1/StrangeMath.java .

Once again, use Emacs to examine and modify the source code of this program:

$ emacs StrangeMath.java &

2.2 Understanding the user input code
You will quickly notice that there are unfamiliar lines within the StrangeMath source code.
Specifically, at and near the top are the lines:

import java.util.Scanner;
[...]

public static Scanner keyboard = new Scanner(System.in);

4If you make this mistake and lose significant work, contact me. The IT department performs tape-based back-ups
of the files on the servers frequently. Although it may take a day, I can request that copies of your files from before the
mistaken use of cp be restored, thus recovering your lost work.

5

Once again, I will make like the Wizard of Oz and ask that you “not look behind the curtain”—
that is, don’t ask what these magic lines mean. These are, for the moment, lines that are simply
necessary for allowing the user of your program (usually, you) to type in numbers while the pro-
gram runs that the program can then use. To that end, notice the pairs of lines that look something
like:

System.out.print("Enter a value for a: ");
int a = keyboard.nextInt();

The first of these two lines does something familiar: it prints a line of text to the window. In this
case, that text is a prompt, asking the user to enter a datum. The second line, however, is less famil-
iar. Declaring an integer variable named a is something we know how to do, and so is assigning a
value into that space. What is new, however, is the expression, keyboard.nextInt(). Simply
put, this command causes the program to wait for the user to type an integer value and press the
return key. When the user does so, the integer value is assigned into the space named a.5

2.3 Your task: Adding the arithmetic
The user must enter three integer values, namely: a; b; and c. It is your task to then compute three
new values, each of which depends on some subset of a, b, and c. Specifically, you must compute
x, y, and z, noting that all of these values are integers, and all computations should be done
with integer arithmetic:

NOTE THAT THE FORMULA FOR z HAS CHANGED SINCE THE INITIAL VERSION OF THIS
ASSIGNMENT! BE SURE THAT YOU USE THE UPDATED VERSION HERE!

x = (b mod a) + 12

y =
b

a

z =
ab

10c
− 1

Why these wacky arithmetic operations? These will serve as your “magic decoder ring” for the
wild goose chase, below . . . 6

Notice that the final part of the program prints the values of variables x, y, and z to the shell
window. Therefore, the code that you add to the program must declare and assign these variables
their correct values, as described above.

5What happens if the user doesn’t enter an integer? Short answer: Try it and find out! Long answer: The program
will crash—that is, it will abruptly stop running, but not before printing a strange collection of currently indecipherable
(to us) error messages. We will learn how to read such crash messages later. And even later than that, we will learn
how to keep the program from crashing when the user types the wrong kind of input. For now, don’t worry about those
things.

6Put differently, these arithmetic operations were chosen so that, if you find the right values for a, b, and c, you
will then calculate the useful-but-only-superficially-meaningful x, y, and z to find something.

6

2.4 Testing your program
Once you have added the lines of code that perform the strange arithmetic, you should test that
your program works! Specifically, these are three arithmetic operations that you could perform
with pen and paper or, for those so inclined, with a calculator.7 Therefore, you should dream up a
handful of values for a, b, and c. Before running your program, calculate for yourself what x, y,
and z should be if your program is written correctly.

Armed with a few test cases, now run your program:

$ java StrangeMath

When prompted by your program to enter values for a, b, and c, choose any one of your pre-
determined trio of values for those variables. Then examine your program’s output. Did it produce
the values for x, y, and z that you expected? If not, then either your program or your test case
contains an error, and you must determine which is at fault and fix it. If the output does match
your expectation, then you have one (more) test case to support your belief that your program is
correct.8 Once your program has passed enough test cases to convince you that it is likely to be
working correctly, then you should move on to . . .

3 The wild goose chase, take I
Have you even been to the gym? Have you noticed, on the walls surrounding the main, old bas-
ketball court (not LeFrak), the pictures of so many alumni who have competed on various teams,
going back over 100 years? Your mission, should you choose to accept it,9 is to find one particu-
lar person in one particular such photograph.10 Moreover, it’s a race, where those who submit
a correct answer sooner get more credit than those who do so later.11

3.1 Finding the inputs
To find this photograph and the person in it, you must find three very important numbers. Finding
them will require a bit of patience, frighteningly little ingenuity, and, one hopes, a sunny disposi-
tion. Here are the clues—none too subtle—for finding those three numbers:

a: This value is the numeric portion of the street address of the Folger Shakespeare Library.
Truly low cunning is required to discover this value. Should you require more than two
minutes for this task, hang your head in shame and avoid eye contact. Bonus point: Why
might I have involved the poor Folger in this fiasco?

7Don’t forget that you’re using integer arithmetic!
8Do not confuse this belief as being proof that your program is correct. Proving that program produces correct

output in all cases is exceedingly difficult, and way outside of the scope of this course.
9I highly recommend that you do accept it.

10No, I am not kidding.
11I’m still not kidding. And don’t freak out about the credit thing. It’s not like you’re going to get terrible grades

for slow but correct solutions to these projects. The race is a small component of the grading. Now get to work.

7

b: In the Olds Mathematics Library/Reading Room,12 there is an old dictionary sitting upon a
reading pedestal. You need to find the number of the page on which the word “fantod” is
defined in this Webster’s Third New International Dictionary.13

c: Something there is that doesn’t love a wall.
Which class year of Amherst alumns donated a statue of the author of this quote to the
college?

3.2 Using the outputs
This next step should not surprise you. Go run your StrangeMath program, and enter the values
of a, b, and c that you worked so hard to obtain. From it, you will, of course, obtain values for x,
y, and z. These are the values you need to find the person among the pictures of alumni athletes
in the gym. To whit, follow these steps to find the person in question:

1. Go to the gym.14 Go to the hallway on the north side of the basketball court.15 Then, look at
the north wall of that hallway—that is, with your back to the basketball court itself.

2. Starting from the far left side of this wall, find the xth column of photographs.

3. From the bottom of that column, find the photograph in the yth row. Note the team and
year of this photograph.

4. Within the photograph, find the middle row of people. On its far left is the (rather aged, at
that time) head coach.

5. From the left side of that row of people, find the zth person. Note the exact name given for
this person in the photograph.

Recording your big find: Run, don’t walk, to a computer from which you can login to remus/romulus.
Within your project-1 subdirectory, use Emacs to open a plain text file, like so:

$ emacs final-answer.txt &

Into this file, type the two pieces of information that you noted from alumni photograph: the
team/year of the photograph, and name of the person. If you have figured out any of the above
bonus points, add that information to this file of answers. Super-mega-bonus point: Find the two
other photographs in that gym in which this same person appears. Enter into your collection of
answers the year and sport of those two photographs.

When you have entered all of the information that you can gather, save the file and then close
your Emacs window.

12Don’t know where that is? Use The Google, Luke.
13Yup, another bonus opportunity: What author would get the howling fantods if he were alive to see my mimicry

of his heavy use of footnotes?
14Duh.
15Don’t know which way is north? Seriously, you can’t figure that out?

8

4 How to submit your work
You will use the cs111-submit command to turn in your work. Specifically, you should submit
your completed Howdy.java, StrangeMath.java, and final-answer.txt files, like
so:

cs111-submit project-1 Howdy.java StrangeMath.java final-answer.txt

This assignment is due on Tuesday, February 12, before it becomes Wednesday, February
13.

9

	Your first Java program: Printing text messages
	Getting started in the lab
	Continuing your work after lab

	Your second program: User input and arithmetic
	Getting started
	Understanding the user input code
	Your task: Adding the arithmetic
	Testing your program

	The wild goose chase, take I
	Finding the inputs
	Using the outputs

	How to submit your work

