
INTRODUCTION TO COMPUTER SCIENCE I
PROJECT 2

Writing and calling methods

Onto our second project! We now not only know how to perform arithmetic calculations, but we
also have learned a bit about creating small chunks of code to which we can assign names—chunks
of code that we can then use by calling on those names. By defining and calling these methods,
we can divide our computation into smaller pieces that we can re-use in a variety of ways. For this
project, we’re going to write and use methods in a few different ways.

1 Stage I: Programming methods to do unit conversions
The core of this project will be unit conversions—translating a measurement in one unit into some
other unit. In particular, we will use a few different measurements of length, and a few of time.
Here are the units we will use:

• Measurements of length:

– meter (m): The canonical unit.

– foot (ft): 0.3048 m

– inch (in): 1
12

ft

– yard (yd): 3 ft

– smoot: 1.7018 m

– barleycorn: 1
3

in

• Measurements of time:

– second (s): The canonical unit.

– minute (m): 60 s

– jiffy: 1
60

s

– helek: 10
3

s

1.1 Getting started with a new program
Now that you have some units with which to work, it is time to start a new program for yourself.
Specifically:

1. Login to remus/romulus.

2. Create a directory for this project and change into it:

1

https://www.cs.amherst.edu/~sfkaplan/courses/2013/spring/COSC-111/
https://www.cs.amherst.edu/~sfkaplan/courses/2013/spring/COSC-111/projects/project-2.pdf


$ mkdir project-2
$ cd project-2

3. Copy the beginnings of a new source code file, being sure not to forget the trailing space
and period characters:

$ cp ˜sfkaplan/public/COSC-111/project-2/Converter.java .

4. Open the new source code file in Emacs:

$ emacs Converter.java &

You will see, in this source code file, the beginnings of a new program named Converter. It
contains, for starters, two complete methods named convertInchToFoot and convertFootToInch.
Given the conversion factor from one to the other, you should, as these methods show, easily be
able also to convert in the opposite direction.

Your first task: For each of the conversions listed above, write a method to perform that conver-
sion and its inverse (e.g., inches to feet and feet to inches). Each method should follow the same
form as convertInchToFoot. Its caller should provide a double value; the method should
return the conversion as another double value; for converting from unit Foo to Quux, the method
should be named convertFooToQuux, using that exact form of capitalization.1

After writing these methods, you may wish to test them. It is always a good idea to deter-
mine, with pen and paper, what the results should be for a few different inputs, and these methods
are no different. How do you test your methods? Write for yourself a main method—just as we
have since the first day of class—and call on your various conversion methods. Print the results to
the screen to see if they come out correctly.

2 Stage II: Your program using your conversion methods
Now that you have tested your conversion methods, let’s put them to use. In order to do so, we
must commence a new scavenger hunt. To proceed, you need to find two pieces of information.
Specifically:

1. Go the college’s Museum of Natural History. Near it (not in it, find the meteor that crashed
at Canyon Diablo. The placard next to the meteor indicates that this rock created Meteor
Canyon. Record the diameter and depth of that canyon.

1Why does the choice of name matter? It will later, when my program relies on your methods. If your methods
are not named correctly, my program will not work correctly, and therefore, you will get stuck with that part of the
project.

2



2. Head to the gym,2 and find the pool. Find the oldest team or pool record for swimming (not
diving) amongst the men’s and women’s teams. Note both the distance of the event and the
time (and, just for fun, the year and the name).

Your next task: Armed with these piece of information, you should go back to your Converter
program. Change its main method to do the following:

1. Allow the user to enter the diameter and depth of Meteor Crator in meters.

2. Calculate and print these lengths in barleycorns. Note that you should not yourself cal-
culate the conversion factor from meters to barleycorns. Instead, you should compose
methods that you’ve written, based on the conversion factors provided above, and let the
machine do the “heavy lifting” in this conversion.

3. Allow the user to enter both the distance and time, using the native units of yards and
seconds, of the record setting swim.

4. Calculate and print the mean velocity of that swimmer in units of smoots
jiffy . Again, compose

the existing methods that you wrote based on the conversions listed above.

Record these two results to a precision of thousandths (three digits after the decimal point)—you
will need them for the next stage.

3 Stage III: My program using your conversion methods
Your penultimate task: Now we will do something different with your program. Using some
professorial kung-fu, I have written a program that can reach into your Converter program and
use its methods. To use my program, do the following from your project-2 directory:

1. Copy my program into your directory, as follows, being sure to note that this is a .class
file (already compiled), and not forgetting the trailing space and period:

$ cp ˜sfkaplan/public/COSC-111/project-2/MysteryConversion.class .

2. Run my program in your directory:

$ java MysteryConversion

When my program runs, it will prompt you for the diameter and depth of Meteor Crator in
barleycorns, and then the mean velocity of the swimmer in smoots

jiffy . When it does so, enter the
values that you obtained in the previous stage, rounding to the nearest thousandth (three digits
after the decimal point) for each.

My program will then use your conversion methods to calculate another value. If you’ve written
your methods correctly, you will see the correct output—otherwise, it will be incorrect, in which
case you should go back and carefully test your methods again.

How will you know if it is correct? Write down your output, again to the thousandths, and move
on to the next stage...

2Don’t worry—not all of our projects will involve trips to the gym. It just happens to be a good source of arbitrary
numbers, among other things.

3



4 Stage IV: Claiming your reward
Open a web browser, and enter the following web address:

https://www.cs.amherst.edu/˜sfkaplan/courses/2013/spring/COSC-111/projects/XYZ.html

Except that XYZ is not what you should really write at the end of that web address. Instead, you
should replace XYZ with whatever value my program emitted in the previous stage. If you have
entered the correct value for XYZ, then your web browser will automatically be redirected to a
map.

The map is marked (quite clearly) with a location. You should go to that location. When you get
there, you should ask for the “CS 111 treasure.”

Your final task: Once you have claimed your prize, log back into remus/romulus. In your
project-2 directory, use Emacs to open a file named final-answer.txt. In that file, tell
what what your prize was, thus proving that you completed the hunt. Save the file and close your
Emacs window.

5 How to submit your work
Use the cs111-submit command to turn in your work. Specifically, you should submit your
source code file (Converter.java), as well as the decription of your final reward
(in final-answer.txt):

cs111-submit project-2 Converter.java final-answer.txt

This assignment is due Sunday, 2013-Feb-17, at 11:59 pm.

4


	Stage I: Programming methods to do unit conversions
	Getting started with a new program

	Stage II: Your program using your conversion methods
	Stage III: My program using your conversion methods
	Stage IV: Claiming your reward
	How to submit your work

