Networks and Cryptography PRoblem Set 1
 Due Friday, 2013-Feb-15, at 11:00 Am

Note that these questions are from the text (which is on reserve in the science library if you don't have a copy). I present those that I can here so that you may get started before the text is available.

1. Chapter 1, question 1: Imagine that you have trained your St. Bernard, Bernie, to carry a box of three 8 mm tapes instead of a flash of brandy. (When your disk fills up, you consider that an emergency.) These tapes each contain 7 GB . The dog can travel to your side, wherever you may be, at $18 \frac{\mathrm{~km}}{\text { hour }}$. For what range of distances does bernie have a higher data rate than a transmission line whose data rate (excluding overhead) is $150 \frac{\mathrm{Mb}}{\mathrm{sec}}$.
2. Chapter 2, question 2: A noiseless $4-k H z$ channel is sampled every $1 m s e c$. What is the maximum data rate?
3. Chapter 2, question 3: Television channels are 6 MHz wide. How many $\frac{\text { bits }}{s e c}$ can be sent if four-level digital signals are used? Assume a noiseless channel.
4. Chapter 2, question 4: If a binary signal is sent over a $3-k H z$ channel whose signal-tonoise ratio is $20 d B$, what is the maximum achievable data rate?
5. Chapter 2, question 9: Is the Nyquist theorem true for optical fiber or only for copper wire? Why?
6. Chapter 2, question 22: [This question relies on a figure in the book, so you must obtain a copy of the text to answer it.]
7. Chapter 2, question 28: Ten signals, each requiring 4000 Hz , are multiplexed on to a single channel using FDM. How much minimum bandwidth is required for the multiplexed channel? Assume that the guard bands are 400 Hz wide. [Note: A guard band is an excess portion of the frequency range used to buffer one FDM channel from another, thus reducing frequency. See Section 2.5.4 in the book for a more complete explanation and example.]
