
Introduction to Computer Science I

Fall 2014

Final exam — Solutions

1. Question: Provide short answers—no more than a few sentences—to the fol-
lowing questions:

(a) Why do computers work in binary, and not (say) ternary?

(b) How was Deep Blue designed to play chess? That is, how did it determine
its next move?

Answer:

(a) It is economical to make extremely fast devices that perform logic opera-
tion, which are equivalent to binary arithmetic operations.

(b) It performed an extensive search by simulating each possible move by itself
and its opponent for many moves ahead in the game, evaulating the quality
of each move and choosing the best.

1

https://www.amherst.edu/~sfkaplan/courses/2014/fall/COSC-111/

2. Question: Consider Pascal’s Triangle, although shown somewhat lopsidedly:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Specifically, values at the edges of this grid of values are always 1. Meanwhile,
an interior value at row r and column c, written as (r, c), are the sum of the
values at coordinates (r − 1, c− 1) + (r − 1, c). That is, each value is the sum
of the value “north” of it and the value “northwest” of it.

Write a function, printPascal(n), that prints the first n rows of Pascal’s
Triangle.

Answer:

def printPascal (n):

for r in range (1, n+1):

l = [1] * r

for c in range (1, r-1):

l[c] = p[c-1] + p[c]

printRow(l)

p = l

def printRow (l):

for v in l:

print(v, end=’\t’)

print()

2

3. Question: Consider a list of tuples of integers, where each tuple is of the same
length. Furthermore, to consider one tuple as dominating another, then each
of the elements of the first must be greater than the corresponding elements of
the second. For example, if we have two tuples of length 3, then we can say
that (a0, a1, a2) dominates (b0, b1, b2) iff a0 > b0 and a1 > b1 and a2 > b2.

Write a function, orderTuples(l), that sorts this list of tuples from least to
most dominant. If, for some pair of tuples, neither dominates the other, then
they are considered equivalent, and thus their order with respect to each other
does not matter.

Answer:

def orderTuples (l):

for i in range (0, len(l)):

minIndex = i

for j in range (i, len(l)):

if dominated(l[j], l[minIndex]):

minIndex = j

l[i], l[minIndex] = l[minIndex], l[i]

def dominated (a, b):

for i in range(len(a)):

if a[i] >= b[i]:

return False

return True

3

4. Question: Recall our Sudoku solver. Our state-space search function to solve
a given puzzle could yield one of two results: either the puzzle was unsolvable, or
the puzzle was solved (that is, had been completely filled-in without violating
the rules). However, this algorithm could not detect whether a puzzle was
invalid because it might have more than one solution.

Write a modified version of the Sudoku solver, solve(g), that accepts
the Sudoku grid g, attempts to solve it, and returns one of the following integer
results:

• 0 to indicate that no solutions exist.

• 1 to indicate that exactly one solution exists (and the grid contains it).

• 2 to indicate that more than one solution exists.

Answer:

def solve (grid):

empty = findEmpty(grid)

if empty == None:

return 1

(r,c) = empty

solutions = 0

for v in range(1, 10):

grid[r][c] = v

if isValid(grid, r, c):

solutions += solve(grid)

if solutions > 1:

grid[r][c] = 0

return 2

grid[r][c] = 0

return solutions

4

5. Question: Write a function, permute(l), that generates a list of all possible
permutations of the items in the list l.1 That is, if l = [1, 2, 3], then this
function should return:

[[1, 2, 3], [2, 1, 3], [2, 3, 1],

[1, 3, 2], [3, 1, 2], [3, 2, 1]]

Hint: Think recursively! Given the list [1, 2, 3] to permute, what if some
“magic function” provided you the possible orderings of just [2, 3], without
the 1, by returning [[2, 3], [3, 2]]? How could you use this partial
result to re-inject the 1 in every possible position, creating a complete list of
the orderings?

Answer:

def permute (l):

if len(l) <= 1:

return [l]

first = [l[0]]

rest = l[1:]

perms_rest = permute(rest)

perms = []

for perm in perms_rest:

for i in range(len(perm)):

perms.append(perm[:i] + first + perm[i:])

perms.append(perm + first)

return perms

1For those not used to the term, a permutation of a list is an ordering of its elements.

5

