
Introduction to Computer Science I

Fall 2014
Mid-term exam — Solutions

1. Question: Consider the following module of Python code. . .

def red_fish (x):

y = 0

if x == 1:

y = x

x = 2

if x == 2:

y = -x

x = 3

else:

y = x

print(’x = ’ + str(x))

print(’y = ’ + str(y))

def blue_fish (m, c):

i = 0

new_m = ""

while i < len(m):

if m[i] == c:

new_m = new_m + ’X’

else:

new_m = new_m + m[i]

i = i + 1

return new_m

def main ():

x = 1

s = "She sells sea shells by the seashore."

red_fish(x)

red_fish(x)

t = blue_fish(s, ’s’)

print(s)

print(t)

main()

What output is printed when this module is run?

1



Answer: The output produced is. . .

x = 3

y = -2

x = 3

y = -2

She sells sea shells by the seashore.

She XellX Xea XhellX by the XeaXhore.

Discussion: TBA

2



2. Questions: Provide short answers (no more than a few sentences) to each of
the following questions:

(a) What is the difference between a problem that is intractable and one that
is incomputable? Given an example of each type of computation.

(b) Why don’t we use floating-point numbers for every computation? Why
have an int type of data at all?

(c) Recall the rules for determining a leap year : if the year is divisible by 4,
but not if it is divisible by 100, unless it is divisible by 400.1

Write a single expression that, given a variable y that holds a year
number, evaluates to True if the year is a leapyear, and evaluates to False

otherwise. Critically, note that you must write only an expression, not
a statement. That is, no if-then statements or loops.

Answers:

(a) A problem that is incomputable does not have, and cannot have, an algo-
rithmic solution (e.g., The Halting Problem). An intractable problem is one
for which there is an algorithmic solution, but that solution would require
an unreasonable amount of time or memory to compute (e.g., ordering via
random permutation).

(b) Floating point numbers can suffer from rounding errors, where small frac-
tions of the calculation results are inexact. This problem makes compar-
isons between the results of computations difficult. Integer math is always
exact, making comparison straightforward.

(c) (y % 400 == 0) or ((y % 4 == 0) and (y % 100 != 0))

Discussion: TBA

1By divisible I mean that the result of calculating division would leave no remainder.

3



3. Question: Consider the factorial function, which, for a non-negative integer
n, is defined as:

n! =

{
1 if n = 0
n ∗ fact(n− 1) if n ≥ 1

Write two functions to implement this definition:

(a) One version that is iterative (uses loops).

(b) Another version that is recursive (calls itself).

Answer:

(a) Iterative:

def fact_iterative (n):

result = 1

i = 1

while i <= n:

result = result * i

i = i + 1

return result

(b) Recursive:

def fact_recursive (n):

if n == 0:

return 1

else:

return n * fact_recursive(n - 1)

Discussion: TBA

4



4. Question: Consider two strings, s and t. If we assume that len(s) ≥ len(t),
then it is possible that, in a particular sense, s contains t. That is, somewhere
within s, starting at some position k, exists the continguous entirety of t. If s
does contain t, we say that t is a substring of s.

For example, if s = ’I am the very model of a modern major general’,
then t = ’very’ is contained in s starting at position 9. In contrast, another
string, say q = ’moam’ is not contained by s, even though that sequence of
letters does appear in s in that order, but not contiguously.

Write a function named findSubstring that accepts s and t as parameters.
If s contains t, then findSubstring must return the position within s at which
the substring t begins. If t not a substring of s, then findSubstring should
return the special value −1.
Answer:

def findSubstring (s, t):

i = 0

while i < len(s):

shortened_s = s[i : i + len(t)]

if shortened_s == t:

return i

i = i + 1

return -1

Discussion: TBA

5


