
Introduction to Computer Science I

Fall 2014
Sample mid-term exam — Solutions

1. Question: Consider the following module of Python code. . .

def thing_one (x):

y = 0

if x == 1:

y = x

x = 2

if x == 2:

y = -x

x = 3

elif x == 3:

y = 2 * x

x = 2 * y

else:

y = x

print(’x = ’ + str(x))

print(’y = ’ + str(y))

def thing_two (l, v):

for i in range(len(l)):

l[i] += v

v = v - 1

def main ():

thing_one(7)

thing_one(3)

thing_one(1)

l = [20, 40, 30]

v = 6

thing_two(l, v)

print(’l = ’ + str(l))

print(’v = ’ + str(v))

if __name__ == ’__main__’:

main()

What output is printed when this module is run?
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Answer: The output produced is. . .

x = 7

y = 7

x = 12

y = 6

x = 3

y = -2

l = [26, 45, 34]

v = 6

Discussion: The great majority of people got the first four lines of the output—
that is, the first two pairs of lines that show the output for the function calls,
thing_one(7) and thing_one(3).
It was downhill from there. The call thing_one(1) required a careful reading
of the conditional statements in that function. Specifically, notice that there are
two distinct conditional statements in that function: first, an if-then statement;
second, an immediately subsequence if-then-elif-then-else multi-part statement.
The key here was to observe that each of these statements will be applied by
Python in sequence.
That is, with a paramater of x = 1, the condition on the first statement will
be True. As a consequence, the then-branch will assign y = 1 and then x = 2.
Many people stopped there in determining the ultimate value of x and y, but
doing so was incorrect. The next conditional statement would be executed next.
Since x = 2 at that point, the leading if -condition would be True, triggering
that statement’s then-branch. Consequently, y = −2, followed by x = 3. It is
these values that are then printed.
Sadly, the evaluation of thing_two wasn’t much better for most people. Let’s
begin by tracking the values of l and v and their changes as the code progresses.
To do so, we have to remember the effect of scope. That is, the spaces named l
and v in main are different from the parameters named l and v in thing_two.
Let’s call the former lm and vm (m for main), and the latter lt and vt (t for
thing_two).
After all of the calls to thing_one, we see that main will assign lm = [20, 40, 30],
and vm = 6. When main performs the the function call to thing_two, the
arguments lm and vm are passed to thing_two such that the called function’s
parameters are assigned lt = lm = [20, 40, 30] and vt = vm = 6.
The function thing_two will loop through the indices of lt—0, 1, and 2. The
steps that occur within the body of this loop are performed—indeed, they could
only be performed—on lt and vt. Thus, as the loop iterates, the values will
change in the following sequence:
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i lt vt

before loop [ 20, 40, 30 ] 6
0 [ 20, 40, 36 ] 5
1 [ 20, 45, 36 ] 4
2 [ 24, 45, 36 ] 3

When the loop is complete and thing_two is about to return, its local variables
have the values on the last row of this table. The program then returns from
this function call, resuming within main where it had left off, leaving the final
two print calls to be performed.
To determine what these calls will print, we must keep in mind the relationships
between the local variables within main that were used as arguments to the call
to thing_two, and the local variables within thing_two that were defined as
parameters. First, notice that vm and vt are two different spaces. When vm was
passed as an argument to provide an initial valuable for the parameter vt, any
changes to that parameter by thing_two change only the local space.
That is, updates to vt do not change vm at all. The call to print at the end of
main is printing a copy of vm, which remains unchanged with the value of 6.
However, lm and lt are another story. Remember that the spaces named by
these variables do not contain a list; rather, each space points to a list.
The difference is a critical one here. When thing_two is called, the pointer
contained in lm is passed as an argument, thus initializing lt with a copy of
that pointer. In other words, lm and lt point to the same list. Since lists
are mutable, then the changes in the values of the list that occur as thing_two
executes are modifications to that one list. When thing_two completes its work
and returns, lm still points to that very same list and its modified contents.
When main calls print to show l, it is printing the list to which lm refers, which
is the same list that thing_two modified through its pointer lt.
This question was challenging in that you had to understand Python’s rules
about variables, scope, arguments, parameters, and simple values vs. pointers
to lists/strings. However, as always, if you could draw the data, the outcome
was clear.
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2. Questions: Provide short answers (no more than a few sentences) to each of
the following questions:

(a) In Python, strings are immutable while lists are mutable. What is the
difference?

(b) How does the // operator differ from the / operator? Give an example of
where // would be needed.

(c) United Airlines will only allow carry-on bags that are no more than 22
inches long, 14 inches wide, and 9 inches deep. Assuming that variables
named length, width, and depth have already been assigned values, write
an expression combining the three that evaluates to True if bag fits
within those limits, and False otherwise.

Answers:

(a) One a string is created, it cannot be changed. Characters cannot be added,
removed, or altered; any seeming modification of a string (e.g., slices or
append operations) cause a modification to be carried out on a duplicate.
In contrast, lists can be extended, shortened, or its elements altered.

(b) Both operators perform division, but / produces a real-valued result, while
// produces only an integer result. Specifically, any fractional result from
integer division is discarded, truncating the result. We often use integer
division when computing list indices, which cannot be fractional.

(c) length <= 22 and width <= 14 and depth <= 9

Discussion:

(a) While most stated something resembling the correct intuition behind this
difference—one is changeable, the other is not—the devil is sometimes in
the details. Specifically, it was important to remember that each string
and list are not directly stored in a space named by a variable; rather,
the variable spaces point to a string or list. The difference is critical when
describing just what is changeable (or not): the variable’s space; or the
string/list itself. It is the latter to which these terms refer. For the former,
the pointer in each variable’s space is always changeable, for each can be
made to point to a different string or list.

(b) Most of the answers here were again mostly on the mark. There was the
occassional inversion of the two operators, as well as a few who confused
// with the modulus/remainder operator, %, but otherwise the description
of the two were correct. Some people did not read the question carefully
regarding the requested example. Specifically, the example was either for-
gotten completed, or more often, the example was just a demonstion of
how the two would calculate differing results given the same input values
(e.g., 5 / 2 = 2.5 vs. 5 // 2 = 2. Of course, the question clearly asks
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for an example situation in which integer division would be desirable or
necessary.

(c) Far and away the most common mistake was the failure to provide only
an expression, and the question specified. Some wrote conditional state-
ments, others complete functions, adding superfluous material beyond the
desired expression itself. A less common mistake was to take the product
of the length, width, and depth, and thus test the total volume of the bag,
rather than the length of each dimension.
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3. Question:
Write a function named print_big_v (size), where size indicates the size
of the pattern that the function will print. Specifically, this function is called
with 6 as the argument for size, then it should print the following:

\ /

\ /

\ /

\ /

\ /

\/

That is, the “big V”, made up of forward and backward slash characters, should
be 6 rows tall.

Answer:

def print_big_V (size):

for i in range(size):

front_spaces = ’ ’ * i

middle_spaces = ’ ’ * (2 * (size - i - 1))

print(front_spaces + ’\\’ + middle_spaces + ’/’)

Discussion: Answers for this problem were largely good, and a number of
valid approaches were taken (of which the code above is just one). There were
two common errors:

(a) No leading spaces: Some forgot to have their function print any spaces
before the \ character on each line. Whoops.

(b) Insufficient middle spaces: Many printed some spaces between the left
and right “arms” of the big V, but not enough of them. Usually, there was
an expression to print a number of spaces tied to the row number—a valid
approach—but off by a factor of two.

There were a number of less common but more profound errors, including a
surprising number of people who used an extra inner loop, often using the same
variable as the outer loop as a counter. None of these made much sense, and I
can only assujme that they are the result of some rote repetition of a pattern
seen on a sample problem. If you made this mistake, be certain that you know
why it was wrong, and how to approach this type of problem correctly.
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4. Question: Write a function named extract_lesser (l, v) that, from a
list of numbers l finds all of the values less than v, puts them into a new list,
and returns that new list.

Answer:

def extract_lesser (l, v):

less_list = []

for num in l:

if num < v:

less_list.append(num)

return less_list

Discussion: Again there were a number of valid approaches to this problem.
Most commonly, people looped over the indices of l (with a loop something
like: for i in range(len(l)):, but then compared i < v in the next step,
confusing the use of i as a position, not a value itself.
Others tried to keep track of the next available position in the new list (above,
less_list) and assign that position directly. Such approaches are not valid
ways to append a value to an existing list, and would crash the program; either
the append() method or the use of concatenation is necessary too append an
item to the end of the existing list.
A few others printed the final result rather than returning it. Be sure that you
know that difference between returning and printing!
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