
INTRODUCTION TO COMPUTER SCIENCE I
Fall 2014

PROJECT 3A
Creating a substitution cipher program

Encryption is the process of encoding a message so that only those with specialized information—
the corresponding decryption algorithm and key—can read the encoding message. Most forms of
encryption somehow scramble the symbols that represent the message such that it is difficult to
recreate that scrambling in order to then translate the message back into a “normal” form and read
it.

We are going to implement a classic cryptographic cipher—a form of encryption and decryption.
Once you’ve written that program, you will be able to obtain a secret message and then read
its contents. That message will lead you to Project 3b (perhaps indirectly), in which you will
cryptanalyze a second message—that is, crack its code, without the proper key, and read it anyway.
More on that after break. . .

1 The substitution cipher
When performing encryption on a message, we begin with the cleartext of that message: a straight-
forward, common representation of that message. For example, if the message is normally English
text, then the cleartext is just the plain, unmodified written form of that text. We then choose a
particular cipher—a form of encryption and decryption—along with a key: a unique value (often
a number or a passphrase) that is one of the inputs to the cipher. We then encrypt the cleartext
using our chosen key to produce a ciphertext—a scrambled and thus obscured version of that same
message.

The recipient of the ciphertext can then apply the cipher’s decryption, using the key once again
to transform the scrambled for of the message back into the cleartext. Knowing the cipher that was
used is not enough to decrypt that message; the key is also necessary.1

A substitution cipher is one that replaces each possible cleartext character with a corresponding
ciphertext character. For example, we may replace all occurences A in the cleartext with q’s in
the ciphertext, each of the B’s with R’s, and so on. The cleartext message is then encrypted by
replacing each of its original, cleartext characters with the corresponding ciphertext characters.
For example, if we were considering only the 26 uppercase letters of the English alphabet, then
one possible correspondence could be:

Cleartext char A B C D E F G . . . S T U V W X Y Z
Ciphertext char Q D A E H Y W . . . B Z P I M S U V

That is, to form a ciphertext alphabet, we take the plaintext alphabet and permute its characters.
The permutation cannot be purely random, because that same permutation must be used for both
encryption and decryption. Thus, the permutation must be determined in part by the key k that is

1Well, most of the time. If the cipher isn’t sufficiently strong, we may be able to “crack the code” and read the
message without prior knowledge of the key.

1

https://www.amherst.edu/~sfkaplan/courses/2014/fall/COSC-111/
https://www.amherst.edu/~sfkaplan/courses/2014/fall/COSC-111/projects/project-3a.pdf
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Substitution_cipher


chosen for a given encryption/decryption. Specifically, one must use a pseudorandom number gen-
erator (PRNG), where the seed for that algorithm is k, in order to gernerate the same permutation
twice.2

We can create a list containing each of the characters. We may then use k as a seed to randomly
permute those characters. Note also that once we create the randomly ordered list, we can use it to
map cleartext to ciphertext characters and back again.

2 Pseudo-Random Number Generator background
In order to create this random permutation of characters, you will need to use the random number
functions (e.g., random.randrange()). However, for this task, you must understand a bit
more about how these functions work.

2.1 What is a PRNG?
The random functions in Python implement a pseudo-random number generator. Functions like
random.randrange() have been written by someone else, but they are still normal functions,
written using the same Python data types and operations that you have been using. Critically,
Python (and indeed all computers) are deterministic machines—given the same input, they produce
the same output every time. How can a deterministic machine produce a random result? It can’t.

That is why we refer to these functions as being pseudo-random: they are, in fact, determinis-
tic algorithms that merely produce unpredictable results, since they cannot produce truly random
results. These functions “remember” the last random value, and use it to calculate the next one.
The calculation is sufficiently complex that, without examining the function itself, it would be hard
to guess what the next pseudo-random number would be based on the previous one. However, if
you do examine the function, guess the next pseudo-random number based on the previous one is
trivial.

2.2 How do you control a PRNG?
Sometimes, we would like for the sequence of (seemingly) random numbers produced by these
functions to be repeatable—to get the same sequence of unpredictable values out of them. To
achieve this end, there is a useful function that Python’s pseudo-random number generator (PRNG)
provides:

random.seed(value)

By calling this function, you may specify a value (say, some integer, like 5). This function is
used by the PRNG as though it were the most recent random value produced. Thus, by seeding the
PRNG, you bring it to a fixed place in the sequence of numbers that it can produce. Each time you

2Keep in mind the number of possible permutations. For the 26 uppercase letters, there are 26! ≈ 4 × 1026

permutations; Python has 100 printable characters, there are 100! ≈ 9.3 × 10157 permutations. Given that there are
estimated to be about 1080 subatomic particles in the observable universe, you may have difficulty intuitively grasping
just how staggering a number of permutations that is.

2



seed the PRNG, you can then call random.randrange() and get the exact same sequence of
values.

2.3 How do you use a PRNG?
Create and run the following code in a module (which you could name, say, test.py if you
wanted):

import random

def main ():
random.seed(13)
x = random.randrange(0, 100)
y = random.randrange(0, 100)
z = random.randrange(0, 100)
print(x)
print(y)
print(z)

main()

What happens when you run this module twice, thrice, or more times than that?3 You will see
the same output each time. By using random.seed() to set the PRNG to a fixed state (where
13 is the last value it thinks that it produced), the “random” numbers that follow are identical each
time.

Thus, any time you need to make the selection of random values repeatable, you need only
seed the PRNG to some specific value. In the context of scrambling an alphabet of letters for
encryption/decryption, the key could well be the seed. Hint hint.

3 Your assignment
To get started in creating your own encryption program, do the following:

1. Create a new module named encrypt.py. When it runs, it should prompt the user for the
following information, like so (with example responses shown):

Original file? groceries.txt
Encrypted file? groceries.txt.enc
Key? 42

With these responses, the program should read the contents of the file groceries.txt
and perform a substitution on it. That is, it should create a dictionary that maps cleartext
characters to ciphertext characters, and then use that map to create a new file, groceries.txt.enc,
with the message translated to the ciphertext substitutions.

3If twice is “two times”, and thrice is “three times”, then what is “four times”? Quice?

3



2. Create a companion module named decrypt.py that, when run, should invert the work of
your encryption module, like so:

Encrypted file? groceries.txt.enc
Decrypted file? groceries-decrypted.txt
Key? 42

If the key value provided is correct, the decryption module should decrypt groceries.txt.enc
(for example) into a new, cleartext file groceries-decrypted.txt which, if all goes
correctly, should be identical to the original groceries.txt.

This program should create the exact same dictionary that the encryption program does, but
then invert it into a new dictionary, where the values of the original become the keys, and the
keys become the values. Of course, your work from Lab 6 should provide a handy function
for that inversion.

4 Submitting your work

4.1 Your supersecret key
To complete the assignment, you must encrypt something for me (more details below in Sec-
tion 4.2), where the encryption key that you use is a simple kind of summation on your username.
Specifically, go through the characters of your Amherst College username. For each character, add
the following to a running total:

• If the character is a letter, add its position number in the alphabet. So, a is 1, b is 2, . . . , z
is 26. Note that all letters in a username are lowercase, so you need not consider uppercase.

• If the character is a digit, add the negative of its value. So, 1 is -1, 2 is -2, . . . , 9 is -9. Yes,
0 is -0 which is, of course, 0.

The number that you get from this running sum is your supersecret key.

4.2 Submitting
Use the CS submission site, to upload the following for Project 3a:

1. Your decrypt.py module.

2. Your encrypt.py code, but in encrypted form, so really, your encrypt.py.enc file.
It should be encrypted using the supersecret key described above in Section 4.1.

This assignment is due by Friday, Dec-05, at 11:59 pm.

4

https://app.cs.amherst.edu/Submit

	The substitution cipher
	Pseudo-Random Number Generator background
	What is a PRNG?
	How do you control a PRNG?
	How do you use a PRNG?

	Your assignment
	Submitting your work
	Your supersecret key
	Submitting


