
Systems I

Fall 2014
Sample mid-term exam solutions

1. Question: (20 points) Prove that nor is a universal operator. That is, prove that
any logic function is equivalent to some expression that uses only the nor operator.
You may demonstrate equivalence of nor with other operators using Boolean algebra
or (labeled) circuit diagrams.

Answer: Since a DNF expression can be formed for any function, and since DNF
employs only and, or, and not, we infer that this trio of operations is, together,
universal. If we can calculate these three using only nor, then nor is also universal.

(a) not:

x̄ = x+ x (self disjunction)

(b) or:

x+ y = x+ y (double negation)

= (x+ y) + (x+ y) (self disjunction)

(c) and:

xy = xy (double negation)
= x̄+ ȳ (DeMorgan’s)

= (x+ x) + (y + y) (self disjunction)

Discussion: The most common source of error was inattention to detail. Many people
failed to note why it would be useful to show the equivalence to the and/or/not
operators. Others either used truth tables or (largely) unlabeled circuit diagrams.
The former was explicitly not offered as an option for showing equivalence for this
question; the latter was acceptable only because it required a demonstration of at least
the critical portions of the relevant algebra.
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2. Question: (20 points) Consider the logic function described by the following truth
table:

A B C D Y
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

(a) Write this function in disjunctive normal form.

(b) Simplify this expression by using a Karnaugh map.

Answer:

(a) Disjunctive Normal Form:

Y = ĀB̄C̄D+
ĀB̄CD+
ĀBC̄D̄+
ĀBCD̄+
ĀBCD+
AB̄C̄D+
AB̄CD̄+
AB̄CD+
ABC̄D̄+
ABC̄D+
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(b) Karnaugh map:
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Y = α + β + γ + δ + ε
= B̄D +BC̄D̄ + ABC̄ + ĀBC + AB̄C

Discussion: The mistakes on this question were typical ones: misremembering the
layout and/or ordering of each axis; mis-transcribing the correct values into the map;
creating rectangles of invalid sizes. These errors lost a some points, but not the major-
ity. More significant errors involved grossly misshapen maps, the use of algebra instead
of Karnaugh maps for simplification, and grander failures to understand that question
sought a single, simplified logic expression.
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3. Question: (30 points) Create a circuit that calculates a < b, where a and b are 4-bit,
two’s-complement values. This circuit should have a 1-bit output that is 1 when a < b,
and 0 otherwise. Hint: Note that a < 0 ⇔ a − b < 0, implying that subtraction is
likely a useful operation here.
Extra challenge: If you use subtraction to solve this problem, then you must consider
the behavior of your solution when the subtraction yields overflow. Can your circuit
provide the correct answer for all values of a and b, even in the presence of overflow?
If so, how? If not, why not?

Answer: A 1-bit full adder is a device that accepts 3 inputs (cI , a, and b), and emits
2 outputs (cO and r). Define those outputs as:

• r = cI ⊕ a⊕ b
• cO = cIa+ cIb+ ab

The question observes that a < b ⇔ a − b < 0. So, we can perform this comparison
by:

(a) Negating b.

(b) Summing a and −b.
(c) Examining the sign of the result of that summation, where a negative result

implies that the comparison is true, and a non-negative result implies that the
comparison is false.

Consider a 4-bit ripple-carry subtracter, shown below. First, the sign of the result can
be determined by y3, which is the most significant bit and is 1 iff y is a negative value.
We must also consider overflow, which can be determined by v = c3⊕c4. Since overflow
occurs when the sign of the result is incorrect, we know that, when v = 1 then y3 is
the opposite of what it should be. Thus, to restore the correct sign only when overflow
occurs, l = y3 ⊕ v, where l now indicates the result of a < b even in the presence of
overflow.
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Discussion: First, there was no good excuse for missing this problem. We developed
this exact solution in class. More reasonable errors seemed to be the result of studying
the sample exam a bit too carefully without thinking about the underlying semantics of
the answer. That is, many people explicitly tested the subtraction’s result to determine
if it was 0. On the sample exam, where the goal was to calculate a > b, combining the
result of a < b with a = b was a useful strategy for which detecting equality (found by
a − b = 0) was necessary. For the problem of finding a < b, evaluating a = b was at
best superfluous, and at worst an erroneous addition to your circuit.
Some built a circuit that correctly determined the less-than result in the absence of
overflow, which required only to remember how subtraction was performed, as well
as the examination of the y3 output. Others tried to incorporate overflow into their
solutions, but did so incorrectly. To that end, I will reiterate for what I hope is the
last time: The final carry out (c4) is not itself an indication of overflow. Be sure
that you understand why before the final exam.
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4. Question: Draw a circuit that emits the following repeating 2-bit sequence:

00, 01, 00, 10, 00, 11 . . .

Your circuit should have 2 bits of output, as well as incoming clock and clear inputs.
Every 6 cycles of the clock should progress through this sequence, which should “wrap
around” and repeat with the next 6 clock cycles. You may use basic memory devices
such as flip-flops (which may be aggregated into registers).
Answer: The sequence has a length of 6, so we use a 3 bit register to count from 0
to 5, repeatedly, to keep track of the current position in the sequence. Each position
number is then mapped to its corresponding output pattern. In the following truth
table, Q is the current position number in the sequence, D is the next position number
in the sequence, and Y is the value at that point in the sequence. In other words, Q
and D are a standard counting sequence, used internally to track which of the in the
2-bit output values Y in the sequence to show at that moment.

D2 D1 D0 Q2 Q1 Q0 Y1 Y0
0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 1
0 1 1 0 1 0 0 0
1 0 0 0 1 1 1 0
1 0 1 1 0 0 0 0
0 0 0 1 0 1 1 1

From this truth table, we derive the following logic functions for D (which determines
the next state) and for Y (which determines the output):

D2 = Q2 ⊕Q1Q0

D1 = Q̄2(Q1 ⊕Q0)
D0 = Q̄0

Y1 = (Q2 ⊕Q1)Q0

Y0 = Q̄1Q0

Given a 3-bit register driven by a clock input1, with a clear input that is permanently
disabled (not clearing the register), the sequential logic described above yields the
following circuit:

1Accidentally not shown.
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Discussion: This question was the trickiest of the bunch. The insight was to notice
that, although the sequence had two bits per position, two bits alone could not possibly
encoding the current position in the sequence. Some used ad-hoc arrangements of four
flip-flops, with two bits used to store the current value in the sequence, and two bits
to store the previous value. Taken together, those four bits could correctly determine,
with some properly mapped logic, the next state. This approach was slightly inefficient
bit largely correct.
Some other were just thrown for a loop by the question, and created incomprehensible
circuits. I’d my best to follow them, but sometimes it was hopeless. The most partial
credit was given for any sequential logic circuit that used more than two bits to store the
current state, and to separate the contents of the memory elements from the eventual
output itself.
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