INTRODUCTION TO COMPUTER SCIENCE I
Spring 2014

LAB 4
Loops (and random numbers!)

This week, we are going to practice using loops. Along the way, we will introduce the ability
to have the program randomly choose values, allowing us to have an “unpredictable” part of our
programs. Finally, we’ll combine the two into a little game for the user to play.

1 Loop practice

Begin by practicing your use of loops by writing a couple of simple ones. Because we are now us-
ing more complex structures like conditional statements (1f-then-else) and loops (while),
we will write this code into a . py module and run that module, rather than type the Python com-
mands directly into the shell window. So, to write these loops, do the following:

1. Open IDLE.

2. Create a new module by going to the File :New Window. Within the new window, select
File:Save, naming the new module practice-loops.py and placing it wherever
you have been storing your work for this course.

3. Within this new module, write code that counts down from 10 to 1, printing each value as
it counts. You should use a while-loop here.

4. Next, add to the module code that obtains an integer from the user (let’s call it v), and then
counts toward 0 from v, again printing each value as it counts. That is, if v = 7, then we
expect to see the numbers decrease from 7 to 0; if v = —12, then we should see the numbers
increase from -12 to 0.

Test your code with various input values to be sure that it works correctly, and then move on to
the next section.

2 Picking random numbers

Computers are deterministic machines. If you twice use the same program, and you provide it
the same inputs each time, then you will see the same results. However, we sometimes want our
programs to behave differently each time we use them. For example, imagine a program that is
supposed to simulate the rolling of a pair of dice.

In order to have our programs behave to some extent unpredictably, Python provides a random
number generator to pick numbers whose values we cannot predict[] Let’s try using this capabil-

1ty. ..

'Strictly speaking, Python provides a pseudo-random number generator. The computer remains a deterministic
device, and if we looked up the exact code for the number generator, and we knew enough about what a program
had done so far, we could predict the values that come from this generator. It’s simply written in a way to make that
prediction difficult. We will discuss these ideas more in upcoming classes.



https://www.cs.amherst.edu/~sfkaplan/courses/2014/spring/COSC-111/
https://www.cs.amherst.edu/~sfkaplan/courses/2014/spring/COSC-111/projects/lab-4/lab-4.pdf

1. Go to the IDLE shell window.

2. Enter the following line:

>>> import random

Note that if you want to use random number generation, you must use this import com-
mand first. For any module that you create that uses random numbers, this line should appear
at the top of your module.

3. Enter the following two lines and see what you get:

>>> x = random.randrange (0, 100)
>>> print (x)

You will see some value between 0 and 99 (but never 100 itself). The function random. randrange (a, |
will randomly select a value between (and including) a and (not including) b. It then returns
that value; here, we assigned whatever that value was into x.

4. Do it again. Type the same two lines as above. Although you perform the same steps, you
will (likely) see a different value. If you keep performing these two steps, you will see a
different value each time.

You may use random. randrange (a, b) to select random values in any of your programs
as needed. In fact, let’s do that now. ..

3 Your assignment

Your assignment, should you choose to accept itﬂ is to write a small program that plays a common
kids’ game: guess the number. Once again, create a new module, and save it with the name
guess.py into your usual folder for COSC-111 work. Then, write the code for this program to
do the following:

1. Prompt the user for a highest value for this game, which we’ll call upper. That is, the user
wants to guess numbers between 1 and upper.

2. Randomly select secret, the value between 1 and upper.

3. Repeatedly allow the user to guess a number, guess. Depending on what the guess is, do
one of the following:

e [f the guess is out of the valid range of possibilities, print an error message and let the
user try again.

2You should.



e If the guess is correct, print a congratulatory message and end the program.

o If the guess is too low, print a message that the secret is a higher value and let the user
try again.

o If the guess is too high, print a message that the secret is a lower value and let the user
try again.

An extra challenge: Once you have this program working, can you change it to (a) count
how many valid guesses the user enters before guessing correctly, and (b) only allows the user
[log»(upper)] guesses before revealing the secret and ending the program f]

4 Submitting your work

Go to the CS submission system to submit your work for this lab. You need only submit your
guess.py module.

This assignment is due on Sunday, Feb-16, 11:59 pm

3Why [logs] guesses? Why shouldn’t the user get more guesses than that?

3


https://app.cs.amherst.edu/Submit

	Loop practice
	Picking random numbers
	Your assignment
	Submitting your work

