
SYSTEMS II — PROJECT 1
Multiprogramming and CPU scheduling

1 The goal of this project
Now that we have both a BIOS and a fledgling kernel (Project 0), we want to augment the kernel
so that it can load and run multiple processes, using a simple round-robin CPU scheduler.

2 Strings and the console device
The console drive is really a RAM whose contents are continually displayed in a window as
80 × 24 character grid of byte-sized ASCII values. To change the appearance of the console,
simply write values into the memory.1

The assembler also provides slight assistance in printing. The assembler provides a .Text
mode, in which you may label null-terminated strings. That is, you may provide, as a constant, a
sequence of characters, enclosed in double-quotes. Moreover, you may label that string constant,
and thus refer to the addresss at which it will be loaded. The assembler, for each string constant,
emit the sequence of byte values that represent the characters in the quotes, and then append a null
character (that is, a character whose underlying numeric value is zero).

There is also a console library—a collection of procedures that help to manipulate the console. In
particular, there is a print() procedure provided, which itself calls on a scroll() procdeure
to scroll the console as more text is added. I recommend using these, although you are welcome to
write your own console maniulation code.

3 Single-segment virtual addressing
Part of your implementation of a multiprogrammed system is the use of simple virtual addressing.
Specifically, each process should be allocated a single, contiguous segment of main memory. The
MMU should enforce the use of that memory segment. By setting the BS (base) and LM (limit)
registers, and then by selecting the virtual addressing mode, the MMU should virtualize each
process’s addresses, allowing it use virtual locations between 0 and limit − base. Moreover, any
attempt to use virtual locations outside that range will trigger an INVALID ADDRESS interrupt.

3.1 Assembler changes
In order for the MMU to do its work, the kernel must be capable of setting the BS and LM registers
as part of scheduling each process on the CPU. Therefore, the assembler now recognized two new
instruction opcodes:

1. 0x0021: SETBS [source A]
1If you look at the physical address range to which the console responds, that RAM, known as a display buffer, is

exactly 80× 24 = 1920 bytes.

1

https://www.cs.amherst.edu/~sfkaplan/courses/2014/spring/COSC-261/
https://www.cs.amherst.edu/~sfkaplan/courses/2014/spring/COSC-261/projects/project-0.pdf


Set the BS (base) register. This one-word register stores the base physical address of a
segment of the virtual memory used by a process. The MMU will add this register’s value
to each virtual address requested by the user-level process, making the virtual address space
appear to begin at address zero. It with then check that the resulting physical address is not
less than the base itself before sending that address to the memory bus.

2. 0x0022: SETLM [source A]

Set the LM (limit) register. This one-word register stores the limit physical address of the
segment of virtual memory used by a process. After adding the base to each virtual address
requested by the user-level process, the MMU will check that the resulting physical address
is less than the limit itself2 before sending that address to the memory bus.

For the kernel to activate the translation capabilities of the MMU, it must put the processor into
virtual addressing mode. Specifically, the JUMPMD process should set two flags:

• User mode: The most significant bit of the mode value, stored into the MD address, indicates
whether the processor is in user or supervisor mode. Setting this bit to 1 activates user mode;
0 indicates supervisor mode.

• Virtual addressing mode: The next most significant bit (that is, bit 30, given that bit 0 is
least significant and bit 31 is most) is a boolean flag indicating the addressing mode. When
this bit is 0, the MMU is inactive, and all addresses are physical. Set this bit to 1 to activate
the MMU to perform single-segment virtual addressing.

3.2 Simulator changes
You should be able to use the setregister and showregister commands to examine the
MD, BS, and LM registers. Do so to ensure that the kernel is configuring and activating virtual
addressing correctly. Additionally, you may set the DB (debug) register to 2 if you want to see
more detailed messages about how the MMU is translating addresses.

Finally, note that you may use the following simulator commands to see all of the registers:

• showregisters text: This command will print, to your shell, the values of all of the
named and unnamed registers.

• showregisters graphic: This command will create a new window, in which the
values of all the named and unnamed registers are shown and updated continually.

4 Your assignment
Modify your kernel so that the simulator may be passed any number of additional ROM images
(after the BIOS and kernel). For example, you should imagine invoking the simulator like so:

$ k-simulator bios.vmx kernel.vmx init.vmx add-two-numbers.vmx fibonacci.vmx

2Note that the comparison is for strict inequality. The implication is that the limit is the physical address of the first
byte beyond the segment—that is, the lowest invalid address beyond the base.

2



4.1 The init program
Notice that, after the BIOS and kernel images, the example above passes an image named init.vmx.
This initialization program is one that you should write to perform a specific task: It should call
on the kernel to create one new process for each of the remaining executable images (.vmx files).
The implication is that the kernel should create a new process using the image that follow itself
(here, init); in turn, the init program should request that the kernel create two new processes,
one each for add-two-numbers and fibonacci.

4.2 System calls
The above description implies that init must perform system calls to request information about
how many ROM’s (executable images) there are beyond the first three (BIOS, kernel, init), and to
request the creation of each new process. Additionally, all of the user-level processes should, when
they have completed their work, be able to terminate themselves via a system call. Therefore, your
kernel should implement (at least) three system calls:

1. IMAGE COUNT: When a user-level process performs this system call, the kernel should
return the number of user-level executable images available in the system (that is, the number
passed when the simulation began).

2. EXECUTE: This system call should create a new user-level process. The caller must be able
to specify which executable image (ROM, .vmx) should be used in the creation of this new
process. The new process must be created and added to the CPU scheduler’s collection of
runnable processes, to be scheduled later.

3. EXIT: When a user-level process performs this system call, its process object should be
removed from the CPU scheduler’s set of runnable processes, and its main memory segment
should be released.

4.3 Other kernel capabilities
In order to support the simulataneous execution of multiple processes, the kernel must also use and
handle clock alarm interrupts. Specifically, when an alarm interrupt occurs, the CPU scheduler
should be invoked. This scheduler should deschedule the current user-level process, recording its
state into its process object. It should then select a new process object, and then schedule that
process on the CPU by restoring its state to the CPU itself.

To perform these scheduling tasks, the kernel will need be maintain its own stack and heap.
The kernel should be composed of a set of procedures, each of which properly maintains its own
stack in the kernel’s segment. Additionally, the kernel should contain a procedure that can allocate
b bytes from the the heap region of the kernel’s space, returning a pointer to that space. This
allocator should be used to create the process objects maintained by the CPU scheduler.

3



5 How to submit your work
Use the CS department submission system command to turn in your programs. You should submit
all of your .asm files, BIOS, kernel, init program, and any user-level programs you write for
testing.

4

https://app.cs.amherst.edu/Submit

	The goal of this project
	Strings and the console device
	Single-segment virtual addressing
	Assembler changes
	Simulator changes

	Your assignment
	The init program
	System calls
	Other kernel capabilities

	How to submit your work

