
SYSTEMS II — PROJECT 1
Revision 0 — 2015-Mar-21

Interrupts and their handling for beginning a kernel

1 Overview and motivation
For this project, we assume that you have a working BIOS that can load and boot some arbitrary
code. Of course, the purpose of the BIOS is to load and boot not just any old code, but specifically
a kernel, which then serves both to control the sharing of the hardware and to abstract the use of
that hardware.

Here, you will begin a fledgling kernel that, once loaded and executed by the BIOS, will establish
its control of the processor and thus all of the system’s hardware. That kernel will then load a single
user-level process, execute it, and then demonstrate that the kernel retains control when that user-
level process does something that such “regular” processes should not be allowed to do.

2 Interrupts

2.1 Codes
For a kernel to establish control of the CPU and the hardware overall, it must establish its proce-
dures as the ones to call when CPU interrupts occur. The K-SYSTEM ISA enumerates the following
interrupts:

0. INVALID_ADDRESS: Some operand specified a memory address that is invalid. Typically
used when an invalid or impermissible virtual address cannot be translated.

1. INVALID_REGISTER: Some operand specified a register number that is invalid.

2. BUS_ERROR: An operand provided an address that yielded an address on the bus that was
invalid. The bus may have received an address for which there is no responding device, or
the bus may have refused to process a misaligned address.1

3. CLOCK_ALARM: A periodic alarm generated when the cycle counter matches the alarm
register. (See the SETALM instruction described in Project-0.

4. DIVIDE_BY_ZERO: Occurs when one of the arithmetic division instructions receives a
denominator operand whose value is zero.

5. OVERFLOW: Occurs when a signed arithmetic operation yields an overflowed result.

6. INVALID_INSTRUCTION: If an instruction contains an invalid opcode, or if an operand
has invalid status bits, then this interrupt occurs.

1A 32-bit system will expect any request for a word-sized value (e.g., not a COPYB instruction) to be word-
aligned—that is, the address A, given 4-byte words, should satifying the property that A mod 4 ≡ 0.

1

https://www.amherst.edu/~sfkaplan/courses/2015/spring/COSC-261/

7. PERMISSION_VIOLATION: A supervisor-only instruction (see the listing of available op-
codes in Project-0) was issued while the processor was in user mode.

8. INVALID_SHIFT_AMOUNT: When one of the arithmetic shift instructions is used, the
number of bits to shift can be no more than the word size.

9. SYSTEM_CALL: A special case of the INVALID_INSTRUCTION interrupt reserved for
the use of a particular invalid opcode used for system call vectoring.

2.2 Vectoring
When an interrupt occurs, the processor performs a specific sequence of steps:

1. Elevate permission mode: Set the processor into supervisor mode.

2. Preserve state: Store into the interrupt buffer the IP at the moment of the interrupt
and any auxiliary information about the interrupt (e.g., the virtual address that triggered an
INVALID_ADDRESS interrupt). The interrupt buffer is a main memory space—at least
two words in size—that the processor finds via the interrupt buffer register (IB). (See the
description of the SETIBR instruction in Project-0.)

3. Vector to interrupt handler: The processor uses the interrupt code to find the correspond-
ing handler procedure. Specifically, the trap table is an array of pointers to the entry points
of interrupt handling procedures. The processor looks up the correct entry in this table by
calculating . . .

te = tb + c|w|

. . . where te is the address of the correct trap table entry, which is obtained from the tb trap
base—the starting address of the trap table—as well as c, the interrupt code, and |w|, the
word size. In short, the interrupt code is an index into the array of word-sized addresses.
The trap base is found via the trap base register (TB), which must be set with the SETTBR
instruction described in Project-0.

Once the handler finds the correct table entry address (te), then it can grab the value from
that address, thus pulling the address to which the processor then jumps in order to handle
the interrupt. Since these addresses are to kernel code, the kernel therefore maintains control
of the processor and other hardware.

3 Your assignment
You must write a first version of your kernel in assembly code (kernel.asm) such that, once
loaded and executed by the BIOS, it does the following:

1. Create a default interrupt handler, which is a function that does little other than halt the
processor.

2

2. Create a trap table; initialize all of its entries to point to the default interrupt handler.

3. Set the TB register to point to the trap table.

4. Create a two-word interrupt buffer.

5. Set the IB register to point to the interrupt buffer.

6. Copy the user-level program (e.g., add-two-numbers, assumed to be the 3rd ROM as
given at the command line for the simulator) into a free space in main memory (RAM).

7. JUMPMD to the copied user-level program’s first machine code instruction.

8. Ensure that the user-level program runs. When it does something that is illegal in user-mode
(e.g., attempt the HALT instruction), be sure that an interrupt occurs and is correctly handled
by a vector to your default interrupt handler.

Once again, observe that you are encouraged to use the DMA portal of the bus controller to carry
out any copying steps (e.g., the user-level program into a free space in RAM).

4 How to submit your work
Use the CS submission systems to submit your work. Specifically, you will need to submit your
kernel.asm file; you may optionally submit an updated bios.asm file if you have changed it
from your Project-0 submission.

This assignment is due at 11:59 pm on Monday, March 23rd.

3

https://www.cs.amherst.edu/submit

	Overview and motivation
	Interrupts
	Codes
	Vectoring

	Your assignment
	How to submit your work

