
SYSTEMS II — PROJECT 2
Revision 0 — 2015-Apr-04

Processes

1 Overview and motivation
We assume, at the start of this project, that you have a working BIOS as well as a fledgling kernel
that can establish a trap table and interrupt buffer, thus taking control of the hardware. In Project-1,
this kernel loaded and ran a single user-level process, which then ran until an interrupt occurred,
triggering a vector into the kernel, which then, in turn halted the machine.

For this project, you update your kernel to load and execute multiple processes. That is, your
kernel should be able to create a number of processes and then switch periodically between them,
thus scheduling a bit of each at a time.

2 Your assignment
You must write a second version of your kernel in assembly code (kernel.asm) such that, once
loaded and executed by the BIOS, it does the following:

1. All of the things done by your current kernel from Project-1: setting up the trap table and
interrupt buffer such that the kernel has control of the hardware.

2. Create, as the first process, the special user-level program init (written as init.asm and
assembled into init.vmx), assumed to be the 3rd ROM as given at the command line for
the simulator. This user-level process must use the CREATE system call (see below) to run
one process each for the 4th through nth process (assuming n total ROM images (a.k.a.,
".vmx" files) listed at the command line).

3. Each process, including the init process, should use a simple single-segment allocation
base/limit virtual memory model. When a given process is scheduled on the CPU (that is,
made to run until an interrupt occurs), the kernel should set its the base and limit registers,
and turn on virtual addressing (but not paging) so that the MMU will enforce the base/limit
addresses.

4. Schedule that first process on the CPU. That is, JUMPMD to the copied user-level program’s
first machine code instruction. Be sure to set all relevant registers properly prior to this jump
into user-space.

5. Write all of the interrupt handlers needed to support these processes. For some interrupts
(e.g., DIVIDE_BY_ZERO), the handler cannot address the problem, and so it should simply
terminate the interrupted process and then schedule another. If the kernel itself is interrupted
due to an error, it should panic and halt with some kind of error indication (e.g., a message
on the console). If the process table ever becomes empty, the kernel should halt indicating
an error-free shut-down.

1

https://www.amherst.edu/~sfkaplan/courses/2015/spring/COSC-261/


6. Among the interrupt handlers, be sure to write a system call handler that can allow each
process to intentionally interrupt itself with the SYSC psuedo-instruction, passing along an
encoded request (e.g., via one of a set of specially selected constants in some register) for
the kernel to perform some function. The system call handler should figure out which of its
own functions to call based on this encoded request. Among these functions must be at least
the following set of system calls:

• EXIT: Terminate the process.

• CREATE: Create another process.

• GET_ROM_COUNT: Return the total number of ROM’s available in the system.

• [Optional] PRINT: Print a string of characters to the console device. (Note that a null
byte—a byte whose value is 0—marks the string’s end.)

Regarding functions: Your kernel will be sufficiently complex at this point that it must be di-
vided into a set of functions, with an initial entry point (e.g., main()) that is the first function
called. Thus, the kernel must give itself space sufficient to maintain an activation stack.

Keep in mind that each interrupt handler is a special type of function—one that is called via
the trap table when an interrupt triggers a vector into the kernel—and is known as a re-entry
point. Although it is not called in the same way normal functions are, it is often will preserve the
interrupted process’s registers and then perform a normal function call to some other part of the
kernel to perform the necessary tasks.

3 Some helpful code
If you follow the link below,1, you will get a copy of my kernel-stub.asm code. Like code
begins with an initial entry point labeled __start, where it finds the base and limit addresses
for RAM in the physical address space, sets some registers to store those boundaries, and then
performs a caller prologue before CALLing the function _procedure_main. Of course, this
function doesn’t yet appear in this starter code; you must provide it.

Additionally, this assembly code has a number of pre-written functions, including one for finding
devies in the device table, and a group for printing null-terminated text strings to the console.

The link is:
https://www.amherst.edu/ sfkaplan/courses/2015/spring/COSC-261/
projects/kernel-stub.asm

4 How to submit your work
Use the CS submission systems to submit your work. Specifically, you will need to submit your
kernel.asm and init.asm files, as well as at least two user-level programs as .asm files.

1Note that the link is itself clickable, even if your PDF viewer doesn’t show it. If you don’t just click it, and instead
copy and paste the link, be sure to retype the tilde in the URL, since the copied one from the document may not match
the normal one you type.

2

https://www.amherst.edu/~sfkaplan/courses/2015/spring/COSC-261/projects/kernel-stub.asm
https://www.amherst.edu/~sfkaplan/courses/2015/spring/COSC-261/projects/kernel-stub.asm
https://www.cs.amherst.edu/submit


These must be constructed for your kernel by performing system calls exactly as your kernel ex-
pects them. You may optionally submit an updated bios.asm file if you have changed it since
your Project-1 submission.

This assignment is due at 11:59 pm on Monday, April 20th.

3


	Overview and motivation
	Your assignment
	Some helpful code
	How to submit your work

