
INTRODUCTION TO COMPUTER SCIENCE II
PROJECT 2

Testing shuffles

We are going to use the concepts abstract classes and inheritance so that we may experiment
with shuffling algorithms and pseudo-random number generators.

1 Decks that shuffle differently
Consider the following (non-comprehensive) approaches to shuffling a deck of Cards:

• Ideal: Using one of the techniques described in class that, we believe, provides a uniform
probability for each card landing in each position.

• Null: Don’t shuffle at all. This is, of course, a pathalogically poor way to generate a random
permutation. Useful as a point of comparison.

• Brute force: For some number of repetitions, randomly pick two Cards from the deck
and swap their positions. The quality of the shuffle will depend strongly on the number of
repetitions.

• Human: An idealized simulation of how humans shuffle. That is, divide the cards in the
deck in half by calculating the halfway point (e.g., for a full deck, all cards from positions
0 to 25 are in the first half, while those in positions 26-51 are in the second). Then, “zip”
the cards together by alternating cards from each half. Repeat some number of times, where
(again) the number of repetitions will dictate the quality.

Any code that uses a Deck object should not need to know which type of Deck (i.e., what kind
of shuffling that Deck performs). So, if the Deck class were abstract, as was its shuffle()
method, then:

• each type of shuffle could be implemented in a concrete subclass of Deck that implemented
the shuffle() method in the appropriate manner, and

• the code that used a Deck could simply take a Deck pointer to whichever concrete subclass
it wants, performing the same operations irrespective of the deck’s type.

2 Measuring the shuffle
If we have different methods for shuffling, we want to test them to see how well (or poorly) they
work. So, we can write a class, ShuffleTest, which contains a main() method that begins
the process of testing the different types of Decks and their shuffling methods. Specifically, this
class would:

• Create a concrete object from one of the Deck subclasses, keeping a Deck pointer to it.

1

https://www.amherst.edu/~sfkaplan/courses/2016/fall/COSC-112/
https://www.amherst.edu/~sfkaplan/courses/2016/fall/COSC-112/assignments/project-2.pdf


• Randomly select a position in the deck (still in its original order), and keep track of which
Card occupies that position.

• Shuffle the deck.

• Draw cards from the deck until the randomly selected card is found, thus determining the
final position of the card.

• Calculate the distance between where that card started (before the shuffle) and where it ended
(after). The distance should be the number of positions that the Card moved forward in the
array, assuming that the position numbers conceptually “wrap around” to position zero.

The ShuffleTest program should keep a histogram of distances. That is, given that each
card may move between 0 and 51 positions when shuffled, the program should keep an array of 52
integers such that the entry at position k represents the number of times the measured distance was
k.

2.1 Invoking the program
ShuffleTest should be run like so:

$ java ShuffleTest 100 Brute 5000

Specifically, the three parameters are:

• Number of data points: The number of times the above process of finding a distance should
be performed and recorded. This parameter is independent of the choice of shuffle type.

• Shuffle type: Which kind of shuffle to use and test.

• Repetitions per shuffle: For those shuffling types that require this parameter, the number
of repetitions to perform. For example, the Human form of shuffling needs to be repeated
some number of times to constitute a full shuffle. This value should indicate how many such
repetitions are performed per call to the shuffle() method.

As a result, this program should emit its histogram, like so:

0 103
1 95
2 112
3 87
...
51 100

That is, the first column shows a distance, while the second column indicates the number of
instances of that distance observed.

2



3 Your assignment
Write the above. Then, for each type of shuffle—and for parameterized shuffles, for a variety
of repetitions—record the distance distributions observed. For each, then perform a χ2 test to
determine how well the shuffle (with a given number of repetitions, if applicable) yielded a uniform
distribution.

4 How to submit your work
Use the CS submission systems to submit your work. Specifically, you will need to submit all
of your source code files. You may use either of the following two methods, while connected to
remus or romulus, to use the submission system:

• Web-based: Visit the submission system web page.
• Command-line based: Use the ˜lamcgeoch/submit command at your shell prompt.

This assignment is due on Tuesday, Nov-15, 11:59 pm.

3

https://www.cs.amherst.edu/submit
https://www.cs.amherst.edu/submit

	Decks that shuffle differently
	Measuring the shuffle
	Invoking the program

	Your assignment
	How to submit your work

