
Elephant Tracks: Portable Production
of Complete and Precise GC Traces

Nathan P. Ricci
Tufts University

nricci01@cs.tufts.edu

Samuel Z. Guyer
Tufts University

sguyer@cs.tufts.edu

J. Eliot B. Moss
University of Massachusetts Amherst

moss@cs.umass.edu

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory Management–(garbage collection);
C.4 [Performance of Systems]: [measurement techniques]

General Terms Languages, Measurement

Keywords Traces; garbage collection; Merlin algorithm; Java

Abstract
We present Elephant Tracks (ET), a dynamic program analysis tool
for Java that produces detailed traces of garbage collection-related
events, including object allocations, object deaths, and pointer up-
dates. Like prior work, our tracing tool is based on the Merlin al-
gorithm [6, 7], but offers several substantial new capabilities. First,
it is much more precise than previous tools: it traces method en-
tries and exits and measures time in terms of them, allowing it
to place events precisely in the context of the program structure.
Second, it is implemented using a combination of JVM Tool In-
terface (JVMTI) [13] callbacks and bytecode rewriting, and works
with any standard JVM. Finally, it produces complete traces, in-
cluding weak references, events from the Java Native Interface and
sun.misc.Unsafe, and VM start up objects. In this paper we also
explore the general design space of tracing tools, and carefully de-
fine the execution model that the traces represent.

1. Introduction
Garbage collection tracing tools have been instrumental in the
development of new garbage collection algorithms. A GC tracing
tool produces an accurate trace of all the dynamic program events
that are relevant to memory management, including allocations,
pointer updates, and object deaths. We can quickly test a new GC
algorithm by building a simulator that reads the GC trace, instead
of developing a full GC implementation in a real virtual machine,
which is a considerable undertaking.

One of the widely used GC tracing tools for Java, GCTrace, is
available as a component of the JikesRVM Java virtual machine [2].
That tool, like ours, is based on the Merlin algorithm [6, 7], but suf-
fers from several limitations. First, the implementation is integrated
directly into the garbage collector. Due to the ongoing evolution
of the JikesRVM Memory Management Toolkit, it no longer func-
tions with recent versions of JikesRVM, and older versions will not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

run modern Java software. Second, GCTrace measures time only
in terms of bytes allocated, a fine metric for GC simulation, but
not useful for program analysis since it cannot readily be tied back
to points in the program. Third, allocation time is not very precise
for events other than allocation: many pointer updates and object
deaths can occur at various points in between two allocations. Fi-
nally, the existing tool does not support a number of features found
in real programs, including weak references and multithreading.

In this paper we present Elephant Tracks, a new GC tracing
tool that is precise, informative, and can run on top of any stan-
dard JVM. Our goal is not simply to address the limitations of prior
work, but to provide new capabilities that allow our tool to sup-
port a wider variety of program analysis and run-time systems re-
search. Our implementation uses a combination of bytecode instru-
mentation and JVMTI (JVM Tool Interface) callbacks to construct
a shadow heap on which it runs the Merlin algorithm to compute
idealized object death times. Its attributes include:

Precise: Trace time is configurable and can be made arbitrarily
precise. We currently measure time in terms of method calls
(i.e., the clock ticks at every method entry and exit), which are
much more frequent than allocations.1

Complete: The implementation properly handles all relevant events,
including difficult cases, such as weak references, the Java Na-
tive Interface, sun.misc.Unsafe, and JVM start up objects.

Informative: Traces include much more than just GC-related
events. We emit a record for every method call and return,
allowing us to tie memory behavior back to the program struc-
ture. In fact, we can reconstruct the complete dynamic calling
context for any time step. We also record information about
threads and exceptions, and, optionally, counts of heap reads
and writes and number of bytecodes executed.

Well-defined: We carefully define the trace execution model,
which embodies a number of subtle design issues that affect the
meaning of the traces. These include trace time, the definition
of object lifetime, and the ordering of events in multithreaded
programs. In this paper we explore these issues in detail and
justify our choices.

Portable: Elephant Tracks is implemented as a JVMTI agent that
runs on any compliant Java virtual machine.

Fast: OK, not fast, but faster. Elephant Tracks includes perfor-
mance tuning and optimizations to reduce overhead, which is
critical for larger, long-running programs.

In the following sections we explore the design space of GC trac-
ing tools, and explain the choices made for Elephant Tracks. We

1 This includes constructor calls, thus tightly bounding most allocations as
well.

109

ISMM’13, June 20–21, 2013, Seattle, Washington, USA.
Copyright c© 2013 ACM 978-1-4503-2100-6/13/06. . . $15.00

discuss the technical challenges of building such a tool using the
JVMTI interface, which does not provide direct access to the
JVM’s representation of Java Objects, or to the garbage collec-
tor. We also discuss the handling of weak references. This proved
difficult because the JVM is able to side-step some of our instru-
mentation techniques in this case. Finally, we present some results,
including overhead measurements, as well as new insights about
the benchmarks gleaned from our precise traces.

2. Background and related work
In this section we describe the general garbage collection tracing
problem and existing solutions, and motivate the need for a new
trace generator.

2.1 Garbage collection tracing
A GC trace is a record of the sequence of memory management
events that occur during a program’s execution. The events of in-
terest may vary depending on the intended use of the trace, but typ-
ically include object allocation, object reclamation, and mutations
in the heap. Many of these events are straightforward to capture,
such as object allocation, since they are explicitly invoked in the
code.2 We can instrument those operations directly to emit a trace
record with the relevant information.

The central challenge in GC tracing is determining object death
times. An obvious solution is to emit an object death record when
the garbage collector actually reclaims each object. This approach
is easy to implement using JVMTI, but is unappealing for at least
two reasons. First, the particular timing of these events is collector-
specific—we would be measuring a property of the GC algorithm
used during trace generation, rather than a fundamental property of
the program. Second, the resulting information is very imprecise.
Most garbage collectors run infrequently, reclaiming large numbers
of objects long after they are no longer needed by the program. As
a consequence, object deaths appear far removed from the program
events that actually cause them. This makes the traces poorly suited
to evaluating new GC algorithms, as the Merlin work showed [7].

2.1.1 Idealized death times
Our goal is to generate traces with idealized death records. That is,
each object death appears in the trace at the earliest time at which
the object could be reclaimed. An idealized trace captures the be-
havior of a program independent of any particular GC algorithm,
with object death events appearing close to the program actions
that cause them. The exact nature of this problem depends on how
we define “the earliest time”. For example, we could compute death
times based on object liveness: an object is dead immediately after
its last use. While interesting as a lower bound, this level of preci-
sion is potentially expensive to compute and cannot be exploited by
any real memory manager. Therefore, we adopt the definition used
in garbage collection and in prior work on tracing: an object is dead
when it is no longer reachable from the roots (local and global vari-
ables) directly or indirectly through any sequence of pointers. This
choice still leaves many subtle issues, however, including the gran-
ularity of trace time and the liveness of root variables, which are
discussed in more detail in Section 3.

A naive algorithm for computing idealized death times is to
run the garbage collector much more frequently. For example,
we could produce a very precise trace by invoking the collector
at every program point where an object could become dead. Not
surprisingly, this approach is totally impractical.

2 This is more subtle than you might think. In Java, the virtual machine may
allocate application-visible objects as side-effects of other actions, such as
class loading, and native libraries can also do so. Similar remarks apply to
pointer updates.

2.1.2 The Merlin algorithm
The Merlin algorithm, introduced by Hertz et al. [6], solves this
problem by using timestamps to infer the idealized death times of
objects when they are reclaimed at regularly scheduled garbage
collections. During normal execution the algorithm timestamps
objects whenever they lose an incoming pointer. At any point in
time an object’s timestamp represents the last time it was directly
observed to be reachable. When the collector reclaims an object,
however, its timestamp is not necessarily its death time. In many
cases an object becomes unreachable indirectly, when an object that
points to it becomes unreachable. In this case we need to determine
which event occurred later: the direct loss of an incoming pointer
(the timestamp), or the indirect loss of reachability (the death times
of the referring objects). So, the idealized death time of an object
(Td(o)) is computed from its timestamp (Ts(o)) and the death times
of any objects that point to it:

Td(o) = Max(Ts(o),{Td(p),∀p : p → o})
This insight leads to a practical approach for GC tracing that is also
at the heart of the system we present in this paper:

• During normal execution:

Record ordinary events in the trace as they occur (e.g.,
object allocations and pointer updates).
Timestamp objects whenever they might become directly
unreachable (i.e., when they lose an incoming pointer).

• At GC time:

Compute idealized death times using the formula above
(implemented roughly as a depth-first search on the graph
of dead objects, pushing computed death times across the
pointers).
Generate a death event record for each reclaimed object and
insert it in the proper place in the trace.
Flush records to disk, and continue ...

An important implication of the Merlin algorithm is that it requires
a notion of trace time for use in the timestamps. In fact, all trace
records need timestamps because the object death records are gen-
erated out of order—we discover the true death times of objects
only at GC time, which is typically much later. The model of trace
time (in particular, its granularity) has a profound impact on the im-
plementation of the trace generator and the precision of the traces
it generates.

2.2 Why a new trace generator?
The first realization of Merlin took the form of a customized
garbage collector called GCTrace, implemented in JikesRVM. The
main advantage of this approach is that the implementation can
be integrated directly into the virtual machine code. The compiler
can be modified to add instrumentation to object allocations and
pointer updates, and the garbage collector can be modified to per-
form the extra death time computation. While GCTrace has proved
to be a valuable tool, it has a number of serious limitations, several
of which are a consequence of its dependence on JikesRVM:

Imprecise: GCTrace uses allocation time for its traces: the trace
time clock “ticks” at each object allocation. As a result, object
deaths and other events that occur in between allocations cannot
be ordered or precisely localized at any finer granularity.

Divorced from program structure: A related problem is that al-
location time does not correspond to anything static in the pro-
gram itself, so figuring out where events occur relative to the

110

code is very difficult (e.g., “In which method did the death of
object 739229 occur?”).

Incomplete: GCTrace ignores a number of difficult corner cases,
including multithreading, JNI, and the various forms of weak
references.

Java-in-Java: Because JikesRVM is implemented in Java, great
pains must be taken not to include VM events and objects in the
trace. Furthermore, parts of the algorithm, such as sorting death
records, are extremely painful to implement because they must
run inside the garbage collector and therefore cannot allocate
any ordinary data structures themselves.

Performance: While all trace generators are likely to be slow, GC-
Trace is particularly slow for several reasons. First, it performs
local variable timestamping using an expensive stack walk at
every time step (every allocation). Second, it works only with
the non-optimizing compiler. Third, it supports only a simple
whole-heap garbage collector.

Application limitations: While in principle any Java application
runs under any JVM, in practice there are variations. JikesRVM,
which is maintained by volunteers, tends to lag commercial
implementations to some extent, so there are applications of
interest that run on commercial JVMs but not on JikesRVM.

Bit rot: MMTk (the memory management toolkit used in JikesRVM)
has undergone a number of radical refactorings, often leaving
the GCTrace implementation out of date.

2.3 Related work
There is a huge body of work on tracing programs to produce a
record of various run-time events. The work most closely related
to ours is the original GCTrace implementation of the Merlin algo-
rithm [7], which is discussed in detail throughout this paper. Fou-
car reimplemented GCTrace using a shadow heap implemented in
C++, like Elephant Tracks, but otherwise preserving the execution
model and dependence on JikesRVM [4].

Another potential approach is to use non-deferred reference
counting, which reclaims objects as soon as their reference counts
becomes zero. Like reference counting collection, however, this
approach cannot directly detect the death of cycles of objects,
and would require frequent tracing collections to achieve high
precision.

Two prior papers explore the relationship between liveness and
reachability for garbage collection. Agesen et al. [1] examine the
effects of applying different levels of liveness analysis to the GC
root set (variables on the stack). They found that on average the dif-
ferences were small, but on occasion static liveness analysis would
improve collection efficiency noticeably. This result suggests that
our dynamic liveness model is reasonable for most purposes, but
could be improved (see later discussion). Hirzel et al. [8] addition-
ally consider the difference between reachability from live roots
and true liveness of objects. They also find that schemes based on
liveness of variables have little impact on reachability. True ob-
ject liveness, however, is significantly different. Elephant Tracks
currently cannot compute equivalent information, since it does not
record reads from objects, but there is no fundamental impediment
to adding this feature.

GC traces have been used to drive empirical studies of heap be-
havior, especially those examining the distribution and predictabil-
ity of the lifetimes of objects [10, 11]. At a coarse level, allocation
time and method time do not produce dramatically different life-
time distributions. For analyses that are sensitive to program struc-
ture, however, small differences in allocation time can span many
methods. In addition, allocation time is not stable across runs of a
program under different inputs.

Jones and Ryder [11] offered perhaps the most well-known
study of object demographics. They showed that the calling context
of object allocation correlates well with lifetime. They could not
determine, however, whether the calling context of object death
correlates with lifetime, which might be a more useful fact for
further improving garbage collection.

Inoue et al. [10] look at what information is needed to precisely
predict the lifetime of an object at its allocation point. They define
a fully precise predictor as one that is accurate to within a single
unit of time. By using allocation time, however, they significantly
reduce the coverage and accuracy of their predictors. The lifetime
of an object in allocation time is much less stable than the calling
context of its death, since the latter is directly related to its cause
of death, while the former includes many irrelevant events (i.e.,
unrelated allocations). This instability is particularly acute across
runs of a program with different inputs.

Compile-time GC [5] and connectivity-based garbage collec-
tion [9] are two examples of techniques where knowing the pro-
gram location at which an object dies is crucial. Such techniques
are often evaluated using trace-driven simulation before embarking
on a full implementation. Using Elephant Tracks traces would yield
a more accurate assessment of their potential.

Lambert et al. present a system for performing platform-
independent JVM timing [12]. Although similar in spirit to our
JVM-independent execution model, the focus of this work is on
developing a model of code execution, rather than heap memory
behavior.

Uhlig and Mudge [14] present a survey of memory tracing tech-
niques. While their focus is on tracing memory accesses for ar-
chitecture and system research, they enumerate a set of features
they consider desirable for tracing systems in general: complete-
ness (all relevant events are recorded), detail (events are associated
with program-level information), low distortion (tracing does not
change the program’s behavior), and portability. Elephant Tracks
achieves many of these goals, although it significantly distorts ac-
tual running time, however, which is why we use a separate notion
of time.

3. Elephant Tracks Design
Our goals in designing a new trace generator are to address the
limitations of prior systems and to add new functionality to support
new kinds of program analysis and memory management research.
The central features of this design are (1) the kinds of program
events recorded in a trace, and (2) the accuracy of this information
with respect to some model of program execution. In this section
we present the design of Elephant Tracks, and we discuss our
choices in the context of the general GC tracing design space. In
Section 4 we describe how this design is implemented.

3.1 Kinds of trace records
A minimal GC trace consists of just a sequence of object allocations
and object deaths, labeled with the trace time and thread ID of each
event. Without more information, though, such a trace has limited
utility. In practice we add trace records for other kinds of relevant
events to provide context for program analysis and to enable more
kinds of trace-based simulations. For garbage collection research,
for example, it is useful to add trace records for pointer updates in
the heap, allowing a simulator to maintain an accurate heap model.
Elephant Tracks can be configured to produce different kinds of
trace records. We currently support the following kinds of records:

• Object allocations and object deaths (with idealized death times
computed using the Merlin algorithm).

111

• Pointer updates in the heap: These records include the source
and target objects, as well as the object field or array index being
updated. We also include updates of static fields.

• Method entry and exit: These records allow trace times to be
mapped to specific methods, and even more precisely, to spe-
cific calling contexts.

• Exceptions: We augment method entry and exit to indicate
when an exception is thrown, the sequence of method calls (if
any) that are terminated early because of the exception, and
the entry to a handler for the exception. The main purpose of
these events is to provide accurate information about method
execution context.

• (Optional) Heap read/write counts: Each time the clock ticks or
a basic block ends, we generate a counts record that summarizes
the number of heap reads and writes (of pointers and non-
pointers), and the number of bytecodes executed, since the last
counts record. Note, however, that multiple counts records can
occur between clock ticks, and they cannot be ordered with
respect to object deaths in the same tick.

Separately from the trace, Elephant Tracks also emits information
about each class loaded, each field declared in the class, each
method declared in the class, and each allocation site in each
method. This information is referred to by the trace, e.g., the trace
will mention a unique allocation site number, which can be found
in the side description file.

We currently do not generate trace records for object times-
tamps or for general memory accesses (including stack reads
and writes). This information would enable an even wider range
of applications, such as cache simulations. These events are ex-
tremely frequent, however, and would result in overwhelmingly
large traces. In addition, instrumenting every single variable access
would be technically challenging—bytecode rewriting might not
be the best approach for this level of detail.

3.2 Execution model
Ideally, we would like to generate perfect traces, in which every
event is recorded with a perfectly accurate and precise time. But
this goal raises a critical question: accurate with respect to what?
That is, what is the execution model that we want the trace to
represent? Elephant Tracks, like other trace generators, relies on a
host virtual machine to execute the target program. It runs alongside
the VM, recording relevant events. The problem is that the timing
of some events is highly VM dependent—directly recording these
events as they occur produces a trace that has the VM’s execution
model “baked in.” Instead, we want to generate traces that have
their own well-defined, less VM-specific, execution model. The
possible models range widely, with some elements closer to the VM
(essentially profiling the VM), and other elements more abstract,
capturing an idealized execution of the program.

The main components of a GC tracing execution model are (1)
the definition of object lifetime (in particular, when are objects con-
sidered dead), and (2) the definition of trace time (i.e., when does
the trace time clock “tick” and with what frequency). The overall
goal of the Elephant Tracks execution model is to define these com-
ponents in such a way that events can be localized precisely within
the structure of the code. The model is idealized for object life-
times, but resorts to VM timing in cases where an idealized model
is not possible, such as the interleaving of concurrent threads and
the clearing of weak references.

3.2.1 Defining object lifetime
Object lifetimes are delineated by allocation and death events. Most
object allocations are explicit in the program, so simply recording
them as they occur produces a VM-independent trace. We have

found, however, that there are several other sources of allocations,
including VM internal allocations (e.g., String constants in class
files and Class objects themselves), objects allocated by the VM
before it can even turn instrumentation on, and objects allocated by
JNI calls. We capture all of these, but cannot associate them with
a usual allocation site in the application, and for those allocated
very early in the run, we cannot provide relative time or context of
allocation.

For object deaths, however, an explicit goal of GC tracing is to
compute idealized death times. Both Elephant Tracks and GCTrace
adopt the standard GC definition: an object is dead when it is no
longer reachable from the roots (local and global variables). Even
within this seemingly narrow definition, however, there are a range
of possible models. To see why, consider the program events that
can cause an object to become unreachable:

• The program overwrites a pointer in the heap (putfield, etc.)
• The program overwrites a static (global) reference (putstatic)
• A local reference variable goes out of scope
• The program changes the value of a local reference variable
• A weak reference is cleared by the garbage collector

While the first two (heap and global writes) are straightforward to
instrument, local variables and weak references are more difficult to
pin down. Furthermore, there are roots inside the VM that we can-
not observe and that the VM does not necessarily inform us about
when they change. Fortunately these are mostly “immortal” refer-
ences, such as to class objects, or relate to constants constructed
from class files (these may come and go).

Local variables
Tracing local variables presents many design choices and chal-

lenges. The key question is: at what point is a local pointer vari-
able dead, and therefore no longer keeping the target object alive?
At one end of the spectrum we could consider local variables live
throughout the method invocation with which they are associated.
In practice, however, most virtual machines apply some form of
static liveness analysis to compute more precise lifetimes. The vir-
tual machine uses this information to construct GC maps, which
tell the garbage collector which variables to consider as GC roots
at a given point in the method.

GCTrace uses the GC maps in JikesRVM to determine which
variables are live. The advantage of this approach is that it is
straightforward to implement. The downside is that the timing of
the object death records depends on the specific liveness analysis
algorithm and choice of GC points made in JikesRVM.

Elephant Tracks currently uses a form of dynamic liveness to
determine the lifetimes of local variables. This choice reflects im-
plementation decisions (described in more detail below). A variable
is considered dead after its last dynamic use. We define a use as one
of the following: (1) a direct dereference (access to an object or ar-
ray), (2) a type test, such as instanceof, (3) obtaining an array’s
length, (4) use as a receiver of a dynamic method dispatch, or (5) a
reference test, such as ifnull.

Dynamic liveness, however, is more precise than static liveness
analysis, primarily because it is not conservative about liveness on
different execution paths. The resulting traces show some object
death times earlier than any real garbage collector could achieve.
For example, a reference variable that is passed through a series of
methods, but never used, is considered dead in all the methods. As
partial compensation we consider a variable live if it is passed to a
method call as a parameter, or returned.

In the future, we plan to add one or more reference implementa-
tions of static liveness analysis that allows us to control the model
of variable lifetimes more precisely, and thus model more closely

112

what idealized optimizing and non-optimizing compilers might do.
For example, an idealized non-optimizing compiler would keep a
variable live as long as its type, as computed according to the JVM
specification, is a pointer type. On the other hand, an idealized op-
timizing compiler would apply a backwards data flow analysis to
determine a static estimate of liveness. However, real compilers
may transform code in various ways, such as inlining methods and
duplicating tails to form superblocks. While we admit that such
transformations occasionally affect liveness for some objects, at
the same time we contend that the vast majority of cases will be
approximated well, for purposes of evaluating GC algorithms, by
a suitable idealized model. Elephant Tracks is a good foundation
from which to explore questions like this.

Weak references
Weak references present an interesting challenge. In principle,

the garbage collector can choose to clear weak references at any
time (or not at all) once an object is no longer strongly reachable.
In practice, they will only be cleared when the collector is actually
run. Further, soft references are cleared “at the discretion” of the
collector, in response to memory pressure. Phantom references are
similarly affected by the timing of collector runs by the host VM.
For a trace, though, this leaves no obvious idealized model of when
to clear a weak reference. Both Elephant Tracks and GCTrace opt to
record these events when the VM chooses to perform them. Given
that programs can perceive and respond to the collector’s decision,
there is no good alternative to this approach.

3.2.2 Trace time
For Merlin-based tracing we need a notion of trace time, so that
object death records, which are generated only at GC time, can be
inserted in their proper place in the trace. The choice of trace time
has a profound affect on the implementation of the tool and on the
resulting traces.

Real time is a bad choice, since it is dependent on many fac-
tors, including the virtual machine, the operating system, and the
hardware. In addition, tracing tends to slow programs down signif-
icantly, so the real times are likely to be significantly different from
uninstrumented runs. Real time is also, in some sense, too precise:
we do not want the trace to reflect the time it takes to actually per-
form a timestamp or record a trace record.

The solution is to express time in terms of some program-level
event: each time the event is encountered we tick the trace clock.
In this way, time depends only on a property of the program, not
on the VM or underlying machine. This model breaks time into
discrete steps, each of which represents a small region of program
execution.

The choice of which event(s) to use for the clock affects the
granularity of time, which ultimately determines the precision of
the trace, since trace records labeled with the same time cannot
be ordered or localized within the region covered by that time
step. The trade-off is that more fine-grained notions of time are
more difficult to implement correctly, since we need to place the
instrumentation more precisely to make sure that every event is
labeled with the correct time. They may also incur more overhead.

Allocation time vs method time
GCTrace measures time in terms of the number of bytes allo-

cated since the program started (called allocation time). At each
allocation, time advances by the number of bytes allocated. Alloca-
tion time is good for basic GC research, since the traces are precise
enough to drive simulations of experimental GC algorithms. Al-
location time is fairly coarse, however, and a single time step can
cover a large region of the code spanning multiple method calls.
Answering questions like “What caused this object to die?” is not
possible.

Elephant Tracks measures time in terms of the number of
method entries and exits executed (which we call method time).
For most programs method time is much more precise than al-
location time because method calls occur around 10 times more
frequently than allocations, depending on the program (we present
measurements in Section 5). Method time is almost a strict super-
set of allocation time, since every allocation of a scalar object also
calls at least one constructor. The exception is array allocations,
but in our experience these are not frequent enough to change the
results significantly. Also, if a constructor receives as an argument
(not the receiver) a new object, there can be two allocations without
an intervening constructor call. Again, this is not common.

The ideal notion of time is probably something like “bytecodes
executed”, since a single bytecode is the finest grain event that is
still VM-independent. A reasonable alternative might be to tick the
clock at both method call/return and object allocations. As we dis-
cuss further in Section 4, ticking the clock more frequently necessi-
tates more object timestamping operations, and thus increases over-
head (and can risk expanding methods such that they exceed the
maximum allowed method size of 65,535 bytes).

While it may seem that the heap read/write counts records
that we make available as an option allow one to use “bytecodes
executed” as a measure of time, the counts records do not “tick” the
clock, in part for the reasons just mentioned. Further, using them as
the clock may make the idealized model too “tight,” allowing little
re-ordering of the kind typically done by optimizing compilers.

3.2.3 Concurrency
Most modern software uses concurrency in some form, which
raises the question of how to order trace events that occur in differ-
ent threads. We adopt a straightforward approach in which time is
global, but trace records include both the time3 and the ID of the
thread in which the event occurred. In the current implementation,
however, timestamps on objects do not include the thread ID, so
object deaths cannot necessarily be assigned to particular threads.

One problem with this approach is that the resulting traces en-
code the scheduling decisions of the VM and operating system.
Furthermore, trace instrumentation perturbs program execution sig-
nificantly, resulting in schedules that could be quite different from
the uninstrumented programs. While interesting, this problem is
difficult to address without controlling the scheduler directly—for
example, by replaying a schedule from a real run. One potential so-
lution is to represent time using vector clocks, which would encode
only the necessary timing dependences between threads. However,
this would still suffer from particularity of orders of interactions.
We hope to investigate alternative designs in the future.

4. Implementation
Elephant Tracks is implemented as a Java agent that uses the Java
Virtual Machine Tool Interface (JVMTI). The primary components
of a system using ET are: the JVM itself, including its JVMTI
and JNI support; the application; the Elephant Tracks agent; the
ElephantTracks Java class file, which connects bytecode instru-
mentation to the agent via Java Native Interface (JNI) calls; and
the instrumenter, which rewrites the bytecode of classes as they are
loaded.

4.1 Timestamping strategy
For Merlin to produce precise death times, the timestamp on an
object must always be the time at which the object last lost an in-
coming reference. This invariant is easy to maintain for heap and

3 We do not actually output the time value, but it can be derived by knowing
which events “tick” the clock.

113

static references, since we can directly instrument these operations,
timestamping the old target before allowing the store to proceed.
For stack references, however, there is no explicit operation denot-
ing the end of a variable’s scope. There are essentially two strate-
gies for solving this problem: (1) timestamp all live variables at
every time step, or (2) timestamp each variable exactly when its
lifetime ends. (Recall that we define a variable as being live only
up to its last actual use.)

GCTrace uses strategy (1), which has the advantage that it is
straightforward to implement: at each tick of the clock, walk the
stack and timestamp each object referred to by a live variable. This
strategy, however, creates a trade-off between performance and pre-
cision. Walking the stack is a starkly expensive operation, so it can-
not be performed frequently, limiting the granularity of the clock.
The problem is particularly acute when using allocation time, since
a single time step can span multiple methods, requiring a full walk
of the call stack at every tick. We believe that stack walking also in-
hibits code optimizations (or forces de-optimization), further slow-
ing execution. Furthermore, as mentioned in Section 3 it relies on
the VM’s GC maps to define variable liveness.

Elephant Tracks uses strategy (2). This approach requires more
instrumentation to timestamp a variable’s referent whenever the
variable is used. It has several advantages, though. The most im-
portant is that it works correctly for any granularity of time. In ad-
dition, it gives the trace generator explicit control over the model of
variable liveness. Finally, it is amenable to an instrumentation-time
optimization (described below) that eliminates redundant times-
tamping operations.

4.2 The instrumenter
The instrumenter is ordinary Java code and is written using the
ASM bytecode rewriting tool [3]. The current version of ET is
written to use ASM 3.3.1. In order to avoid possible tangle be-
tween instrumenter code and the application, we run the instru-
menter in a separate operating system process, connected with
the agent via pipes in both directions. The agent uses the JVMTI
ClassFileLoadHook callback, which causes the JVM to present
to the agent each class that the JVM wants to load, and to give the
agent the opportunity to substitute other bytecode for what the JVM
presents. The ET agent sends the bytecode to the instrumenter,
which sends back an instrumented class file.

The instrumenter assigns a unique number to each class, each
field, each method, and each allocation site (for both scalars and
arrays) in each method, writing them to what we call the names
file. The instrumenter also sends the class and field information to
the agent. (At present the agent has no need to maintain tables for
the other information, so it is not sent.)

4.2.1 Ordinary instrumentation
We defer to Section 4.2.2 some special cases, and describe now the
usual instrumentation added by the ET instrumenter. We organize
the description by feature.

Method entry and exit: On entry, and just before a return, we
insert a call noting the id of the method and the receiver (for
instance methods). In a constructor we cannot actually pass the
receiver (it’s not initialized yet), so we pass null and the agent
uses a JNI GetLocalObject call to retrieve the receiver from
the stack frame.

Exception throw: At an athrow bytecode we insert a call that
passes the exception object, the method id, and the receiver (for
instance methods). The same special handling of the receiver in
constructors happens here, too.

Exception exit: To detect exceptional exit of a method, we wrap
each method’s original bytecode with a catch-anything excep-

tion handler, which makes a call indicating the same informa-
tion as for a throw, and then re-throws the exception.

Exception handle: At the start of each exception handler we insert
a call that notes the same information as for a throw.

Scalar object allocations: The basic idea is to insert, after the new
bytecode, a call that indicates the new object, its class, and the
allocation site number. However, we cannot pass the new object
directly since it is uninitialized. Further, it is on the JVM stack,
not in a local variable, so the JNI GetLocalObject function
will not work. Our solution is to add one extra local variable
to any method that allocates a scalar. We dup the new object
reference and astore it to the extra local. In the call to the agent
we indicate which local variable the agent should examine to
obtain the object reference. Strictly speaking, we do not need to
pass the class, since the agent can figure it out; we may remove
that in the future.

Array allocations: New arrays start life fully initialized, so we
simply pass them in a call to the agent, along with the alloca-
tion site number. For multianewarray we call an out-of-line
instrumentation routine that informs the agent of each of the
whole collection of new arrays that are created. This could also
be done in the agent, if desired.

Pointer updates: For putfield of a reference and for aastore
we insert, before the bytecode, a call that notes the object being
changed, the object reference being stored, and the field (or
index, for an array) being updated. Java allows putfield on
uninitialized objects (mostly so that an instance of an inner
class can have its pointer to its “containing” outer class instance
installed, before invoking the inner class constructor). In that
case we use the same technique as for scalar allocations to
indicate to the agent the object being updated.

Uses of objects: As mentioned in Section 3, ET timestamps ob-
jects when they are used. We mentioned there the cases in which
that happens. We simply insert a call, passing the object to be
timestamped. On method entry we timestamp all pointer ar-
guments, including the receiver. (In constructors we make a
slightly different call since we cannot pass the receiver; the
agent fetches it out of the frame.) For efficiency on method en-
try, we have timestamp calls that take 2, 3, 4, or 5 objects to
stamp.

Counts: As an extension controlled by a command line flag, the
instrumenter will also track the number of heap read and writes,
the number of heap reads and writes of reference values, and the
number of bytecodes executed, and insert calls reporting these
just before each action that advances the timestamp clock, and
just before control flow branch and merge points.

We further include a simple kind of optimization to reduce the
number of timestamp calls. We track which variables (locals and
stack) have been timestamped since the last tick or the last bytecode
frame object. (Frames occur at control flow merge points, and detail
the types of the local and stack variables at that point.) We avoid
timestamping an object twice in the same tick. This optimization
requires tracking object references as bytecodes move them around,
but is straightforward. The optimization is effective, and we found
it necessary in order to avoid having some methods increase in size
so much, because of added instrumentation, that they overflow the
maximum allowed method size.

4.2.2 Instrumentation special cases
We now detail various special cases (beyond access to uninitialized
new objects, mentioned in the previous section).

Native methods: In order to indicated when a native method
is called and returns, we change its name, prepending $$ET$$,

114

and insert a non-native method that calls the native method. We
instrument the non-native method essentially as usual. A number
of native methods require special treatment, however:

getStackClass: This method of java.lang.Class, and several
similar methods, include an argument specifying the number of
stack frames to go up to look for some information. To wrap
these native methods, the ET non-native wrapper adds one to
the number of frames before calling the native. This properly
adjusts for the extra level of call that the wrapper adds.

getClassContext: This method of the IBM J9 ClassLoader
probes a specific number of frames up the stack, so wrapping
it disturbs the result. With regret, we do not wrap it. (We con-
tend that native methods subject to this problem should be re-
designed, like getStackClass described above, so that they
can be wrapped.) A number of other methods exhibit essentially
the same problem.

Several native methods of class Object: Specifically, getClass,
notify, notifyAll, and wait do not operate correctly if
wrapped, so we omit them.

initReferenceImpl: This method of class Reference initial-
izes the referent field of a weak reference object. We instru-
ment it specially so that the agent can observe the update to the
field, which otherwise would be hidden to ET.

Several methods of sun.misc.Unsafe: for allocateInstance
we note the allocation; for a successful compareAndSwapObject
we note the pointer update, as we do for putObject, putObject-
Volatile, and putObjectOrdered. All of these updating op-
erations work in terms of the offset of a field or array element
into the object, a fact not readily available to the agent. There-
fore we instrument objectFieldOffset, staticFieldBase,
staticFieldOffset, arrayBaseOffset, and arrayBase-
Scale to inform the agent of the base or offset information they
return, so that the agent can map the offsets and bases back to
fields and array elements.

System.arraycopy: We instrument this specially so that the
agent can note all the resulting updates to arrays of objects. The
agent does the actual work and notes the effects, taking care to
deal correctly with situations that will throw an exception, etc.

Class Object: We instrument Object.<init> to report the
newly initialized object. Sometimes this is the first time we see
an object, e.g., for some objects created via JNI calls. We carefully
avoid instrumenting Object.finalize since having any bytecode
in that method will cause every object to be scheduled for finaliza-
tion (which breaks JVMs). Any finalize method in another class
is instrumented, so finalizations are visible in the trace.

Timestamping new objects: Trying to obtain a reference to and
timestamp a new object in Object.<init> or Thread.<init>
fails, but the object will be reported soon anyway, so skipping the
timestamp operation is not harmful.

4.3 The agent
The agent performs these functions to support ET’s goals:

• Sends classes to the instrumenter and returns instrumented
classes to the JVM.

• Notes several actions of the JVM and responds appropriately.
These include: changes in the JVMTI phase of execution
(VMStart, VMInit, and VMDeath); GarbageCollectionFinish,
which triggers a scan (described further below) to see if any
weak references have been cleared; and VMObjectAlloc, to
detect objects allocated directly by the VM.

• Intercepts various JNI calls so that it can emit suitable trace
records, specifically, AllocObject, ThrowNew, and the var-

ious NewObject and NewString calls, to note the new ob-
ject; and SetObjectField, SetStaticObjectField, and
SetObjectArrayElement to note reference updates.

• Handles the various instrumentation calls from the Elephant-
Tracks class and (generally) creates a trace record, inserting it
into a buffer.

• Maintains a model of the heap graph. Each node represents an
object and each directed edge a pointer. The model also includes
static variables, but does not (cannot) include various VM inter-
nal roots, and as previously described, we do not model stack
roots directly, but employ timestamping to determine liveness
from thread stacks.

• To help maintain the heap graph model, and to identify objects
in trace records, the agent uses the JVMTI object tagging fa-
cility to associate a unique serial number with each object, as
early as possible after the object is created.

• Maintains a table of object liveness timestamps, and the times-
tamp “tick” clock.

• Maintains a data structure describing weak objects and their
referents. Whenever the JVM runs its garbage collector, after
collection completes the agent notifies a separate agent thread
to check each weak object to see if its referent has been cleared.
This thread will timestamp the now-unreachable referent with
the current time, giving a good-faith estimate as to when it died.

Trace outputting proceeds in cycles. This is because determining
which objects have died, propagating timestamps, and inserting
death records at the right place in the trace, is a periodic activity,
done in batches. When the agent is notified that the JVM is entering
the JVMTI Live phase, the agent iterates over the initial heap and
creates an object allocation record for each object and a pointer
update record for each non-null instance and static field. When the
agent is notified that the JVM is entering the JVMTI Dead phase
(JVM shutdown), it closes out the current buffer of trace records.

In between, during the Live phase, whenever the trace buffer
fills with records, the agent:

1. Forces a garbage collection and then iterates over the remaining
heap. This allows the agent to detect which objects have been
reclaimed since the trace buffer was last emptied.

2. Applies the Merlin algorithm to compute object death times
(really “last time alive” times).

3. Checks weak objects to see if their referent as been cleared. The
VM does not inform the agent directly about this, but since we
note referent field initialization, we know about weak objects
and their referent targets. The tables the agent maintains for
these are carefully designed not to keep the objects live (we
use JNI weak references).

4. Adds death records to the trace buffer, properly timestamped.
5. Sorts the records using a stable sort, and outputs them.

The last step, sorting and outputting, we observed to consume about
half the time of creating a trace and so we developed a parallel
version. We report performance results in Section 5.

4.4 Properties of our implementation approach
Our implementation strategy has many advantages and few draw-
backs. Its advantages include:

• It works with commercial JVMs (in principle with any JVM
supporting JVMTI) and can run any application. Of course
timing-dependent applications may misbehave as with any tool
that slows execution, etc. This prevents several DaCapo bench-
marks from completing successfully.

115

• The run-time is implemented in C++, with all of its data struc-
tures outside of the JVM. This makes it easier to insure that
ET data structures and actions are not inappropriately entwined
with the application and JVM.

• The instrumenter is in a separate process, insuring it does not
become tangled with the application and allowing it to run on
a different model JVM, if that is convenient. Our reliance on
ASM is not problematic because ASM is widely used, actively
maintained, and part of the infrastructure of at least one major
commercial JVM (Oracle’s HotSpot).

• We capture even some very tricky cases, including weak ref-
erences, field updates via sun.misc.Unsafe, reflective object
creation, updates, and method calls, VM internal allocations,
relevant JNI calls made by the VM or other native libraries, and
System.arraycopy.

Drawbacks of ET as it stands are mostly ones that similar tools are
likely to share:

• A few methods cannot be instrumented, since doing so breaks
the JVM.

• Relative timing and thread interactions are affected, which may
change application behavior.

• Weak reference clearing is dependent on the vagaries of the
JVM.

• Precision in determining object deaths, and the general wealth
of information in the traces, come at a cost: the execution
dilation factor is on the order of hundreds (see Section 5 for
performance results).

• The resulting system is not as simple as we would like. There
are places with somewhat tricky synchronization and more
data structures and mappings than we would like, but it is
not easy to deal with features such as weak references and
sun.misc.Unsafe.

• We rely heavily on correctness and completeness of JVMTI and
JNI support. One implication is that, at present, JikesRVM can-
not support ET. Also, we have discovered previously unreported
JVM bugs, such as failure of one JVM to present for rewriting
every class it loads, which implies that a handful of classes go
uninstrumented. (That bug is being fixed, but it appears we later
found a similar case whose fix will take longer.)

4.5 Some future directions
We have in mind a few things to work on in the future. One is to
devote additional effort to streamlining common cases to improve
ET’s performance further. For example, at object allocations we
do not need to pass the name of the class of the object in the
instrumentation call at all, and we would save effort (and bytes in
the trace) if we output the instrumenter’s number for the class rather
than the class name. Perhaps of more significance, we want to tune
the data structures that are accessed concurrently, and in particular
the locking protocols. We wish to explore different models of
local variable and stack liveness, approaching more closely what
bytecode interpreters and JIT compilers are likely to do. The time
required to rewrite bytecodes in the instrumenter is generally quite
small compared with ET’s overall running time, so performing data
flow analyses, etc., will not itself create bottlenecks. A semantic
extension we want to explore is moving ET from being a GC
tracing tool to being (also) a memory tracing tool, outputting traces
that include all heap accesses. This might be useful for modeling
cache and memory system behavior (neglecting the stack). It might
be tricky to accomplish this without causing method size to increase
so much that methods exceed the JVM specification limit of 64K
bytes.

5. Results
5.1 Performance
In this section we present results from running Elephant Tracks on
the DaCapo Benchmarks, in order to give a sense of its performance
and the properties of the resulting traces. (Unfortunately, it fails
to run tradebeans and tradesoap, perhaps because of internal
timeouts.)

In Table 1 we present the run-time overhead of our tool under
several configurations:

In the No Callback configuration, all of our bytecode instru-
mentation was injected, but callbacks into the JVMTI agent were
disabled (resulting in an empty trace). Additionally, the No Call-
back configuration enables only the absolute minimum number of
JVMTI features necessary to instrument classes. This represents a
practical lower bound on the overhead of instrumenting class files
and executing the instrumented bytecode, without the overhead of
calling into the JVMTI agent, processing the events, or producing
a trace record.

The Serial ET configuration periodically pauses to generate
death records, put them in order, and output them to the trace file.
In contrast, the Parallel ET configuration spawns a separate thread
to do this work. This generally results in better performance and
fewer pauses in the traced application, but may be of no benefit
if the machine lacks sufficient resources to execute this thread in
parallel with the application.

With a geometric mean of about 250, the overall dilation factor
of Elephant Tracks is within a factor of two of the published dilation
factors of GCTrace [6, 7], while providing much more information.

The dilation factors of the different benchmarks are not uni-
form. This diversity cannot be explained only by the differences
in amount of instrumentation, since there is no simple linear rela-
tionship between the No Callback configuration and the other con-
figurations. Similarly, it could not be explained by a simple linear
model relating number of calls into the JVMTI agent and/or aver-
age heap size of the benchmark being traced (at least, no model we
were able to discover). Therefore, we theorize that it relates to com-
plex interactions between our instrumentation, Java optimizations,
and/or the implementation details of the JVMTI interface.

5.2 Trace analysis
Table 2 shows the composition of the traces by event type (per-
centage of the trace accounted for by each type). Method entry
and exit events outnumber the others significantly, which is why
method time is so much more precise than allocation time. In fact,
on average there are 70 method entry/exit events between any two
allocations. In other words, a single tick of the allocation clock can
span dozens of methods, making it difficult to localize object death
events within the code. A single tick of the method time clock occa-
sionally contains an allocation, and depending on where the starting
and ending method events are found, we might not be able to tell if
a death event occurred before or after the allocation. In a few cases,
a single unit of method time might contain two or more allocations.

In order to demonstrate the value of these more precise traces,
we present a few simple trace analysis examples. First, a simple
escape analysis is easy to perform with ET traces. We process a
trace, and upon encountering a record of object allocation, note
the context in which it occurred. Then, if the death event for that
same object is encountered before the associated method return, we
know the object has not escaped. Conversely, if we do not find the
death record before this point, the object has escaped. Note that
this does not necessarily mean that there is any static analysis that
could have determined in advance that the object would or would
not have escaped. The results of this escape analysis are reported

116

Benchmark No Callback Serial ET Parallel ET
Dilation Dilation Dilation

avrora-default 1.6 436.5 291.1
avrora-large 0.9 553.9 436.1
avrora-small 1.7 354.0 227.3
batik-default 3.7 152.5 102.6
batik-large 3.0 124.6 84.1
batik-small 2.9 58.3 41.9
eclipse-default 18.0 310.5 2110.5
eclipse-large 19.3 498.6 1603.6
eclipse-small 50.5 47.6 4297.5
fop-default 2.6 181.2 130.2
fop-small 2.8 42.0 30.7
h2-default 4.4 3137.3 3245.8
h2-large 4.3 2652.7 3583.1
h2-small 3.1 1272.9 1038.7
h2-tiny 3.9 947.5 754.7
jython-default 2.0 342.2 235.0
jython-large 2.5 949.4 774.9
jython-small 1.6 93.1 71.5
luindex-default 1.7 88.4 71.6
luindex-small 1.6 5.8 4.4
lusearch-default 2.7 385.7 304.3
lusearch-large 2.8 451.8 327.9
lusearch-small 2.9 112.5 85.7
pmd-default 2.0 276.1 134.6
pmd-large 2.4 549.1 230.2
pmd-small 1.8 7.4 5.6
sunflow-default 5.9 1830.1 1457.8
sunflow-large 6.4 2073.2 1583.3
sunflow-small 6.9 598.1 481.2
tomcat-default 1.8 100.3 72.3
tomcat-large 1.7 240.0 175.4
tomcat-small 1.8 48.4 38.4
xalan-default 3.0 482.0 372.5
xalan-large 3.7 922.6 715.4
xalan-small 2.8 114.8 95.5
geometric mean 3.2 257.7 245.8

Table 1. Run-time overhead for Elephant Tracks on the DaCapo
benchmark suite

in Table 3, where we see that in most benchmarks a majority of
objects escape their allocating context.

Second, previous work has shown that the allocation site plus
some calling context is a good basis for predicting object lifetime
(measured in bytes of allocation) [11]. Since Elephant Tracks’
traces can also provide the calling context of an object’s death,
it is possible to consider whether the allocation context is also a
predictor of death context.

As a preliminary investigation, we performed the following
analysis. Each object’s allocation is recorded with a triple, consist-
ing of the allocation site, the allocating method, and the caller of
the allocating method (this gives us a partial calling context). Next,
the analysis finds the top ten allocation contexts (based on number
of objects allocated). For each object allocated in these contexts, it
determines the object’s partial death context (there is no site for a
death event, so we consider only the method in which it died, and
the calling method). Finally, the analysis finds, for each allocation
context, the most common death context for objects with that al-
location context. In Table 4 we report the average percentage of
objects allocated in the top ten contexts that die in the plurality
context.

This initial work suggests that the death context of an object
may be a stable and predictable feature. However, additional refine-

Benchmark Method Alloc Catch Pointer
+ Death + Throw Update

avrora-default 97.97 0.30 0.00 1.74
avrora-large 95.17 0.24 0.00 4.59
avrora-small 97.85 0.30 0.00 1.85
batik-default 92.01 1.70 0.00 6.29
batik-large 92.34 1.77 0.00 5.89
batik-small 92.55 2.55 0.00 4.89
eclipse-default 88.65 4.29 0.00 7.06
eclipse-large 90.24 3.23 0.00 6.52
eclipse-small 93.67 3.27 0.01 3.05
fop-default 90.30 4.63 0.00 5.07
fop-small 89.83 4.21 0.00 5.95
h2-default 94.23 2.86 0.00 2.90
h2-large 94.92 2.02 0.00 3.06
h2-small 94.05 3.04 0.00 2.91
h2-tiny 93.98 3.11 0.00 2.91
jython-default 91.64 3.08 0.02 5.26
jython-large 91.74 2.79 0.01 5.46
jython-small 97.36 1.11 0.00 1.53
luindex-default 96.37 0.28 0.00 3.36
luindex-small 94.91 1.36 0.00 3.72
lusearch-default 91.70 2.73 0.05 5.52
lusearch-large 91.70 2.72 0.05 5.52
lusearch-small 91.77 2.74 0.05 5.43
pmd-default 87.31 3.86 0.10 8.73
pmd-large 87.04 4.27 0.09 8.60
pmd-small 92.54 3.48 0.01 3.97
sunflow-default 94.84 3.00 0.00 2.16
sunflow-large 94.83 3.00 0.00 2.17
sunflow-small 94.90 2.96 0.00 2.14
tomcat-default 89.92 5.92 0.02 4.14
tomcat-large 90.47 6.33 0.01 3.19
tomcat-small 89.00 5.28 0.03 5.70
xalan-default 94.10 1.54 0.00 4.37
xalan-large 94.11 1.52 0.00 4.37
xalan-small 93.99 1.65 0.00 4.36
mean 92.74 2.85 0.01 4.40

Table 2. Percentage of each record type in traces of the DaCapo
benchmark suite

ment will be required to further illuminate the relationship between
an object’s allocation context and its death context, as well as to de-
termine if this relationship can be exploited for any optimization.

6. Conclusions
We have presented Elephant Tracks, a tool for efficiently generating
program traces including accurate object death records. Unlike
previous tools, Elephant Tracks traces allow recorded events to be
placed in the context of the methods of the program being traced.
It also works independently of any particular choice of the JVM to
which it attaches. These two features will allow the prototyping of
new GC algorithms and new kinds of program analysis, and let the
tool keep up with changes in the JVM and class libraries. Elephant
Tracks offers performance comparable to similar previous tools but
a wealth more information and covers many more of the tricky and
corner cases of Java and Java virtual machines.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under Grants CCF-1018038 (Guyer and Ricci) and
CNS-1162246 (Moss).

117

Benchmark % Escaping Benchmark % Escaping
avrora-default 83.53 luindex-default 54.14
avrora-large 79.39 luindex-small 46.25
avrora-small 87.41 lusearch-default 39.98
batik-default 63.79 lusearch-large 40.00
batik-large 62.97 lusearch-small 40.02
batik-small 62.22 pmd-default 53.68
eclipse-default 32.32 pmd-large 52.66
eclipse-large 41.97 pmd-small 51.78
eclipse-small 26.85 sunflow-default 68.63
fop-default 55.25 sunflow-large 68.49
fop-small 65.06 sunflow-small 68.38
h2-default 58.03 tomcat-default 25.44
h2-large 58.24 tomcat-large 21.87
h2-small 58.00 tomcat-small 32.44
h2-tiny 57.82 xalan-default 54.99
jython-default 42.13 xalan-large 55.16
jython-large 42.95 xalan-small 53.59
jython-small 68.02

Table 3. Percentage of objects escaping their allocating context in
the DaCapo benchmark suite

Benchmark Mean % Benchmark Mean %
avrora-default 41.22 luindex-small 76.57
avrora-large 44.38 lusearch-default 83.39
avrora-small 30.06 lusearch-large 79.63
batik-default 63.05 lusearch-small 83.37
batik-large 59.64 pmd-default 47.82
batik-small 75.08 pmd-large 34.98
fop-default 81.24 pmd-small 57.70
fop-small 64.54 sunflow-default 86.12
h2-default 86.37 sunflow-large 80.12
h2-large 88.09 sunflow-small 89.54
h2-small 86.78 tomcat-default 75.80
jython-default 68.79 tomcat-large 72.15
jython-large 74.03 tomcat-small 79.32
jython-small 74.15 xalan-default 71.48
luindex-default 78.45 xalan-large 71.55

Table 4. Mean percentage of objects that are born in the same con-
text and die in the same context (over top 10 allocation contexts).

References
[1] Ole Agesen, David Detlefs, and J. Eliot B. Moss. Garbage collection

and local variable type-precision and liveness in Java virtual
machines. In PLDI, pages 269–279, 1998.

[2] Bowen Alpern, Steve Augart, Stephen M. Blackburn, Maria A.
Butrico, Anthony Cocchi, Perry Cheng, Julian Dolby, Stephen J.
Fink, David Grove, Michael Hind, Kathryn S. McKinley, Mark F.
Mergen, J. Eliot B. Moss, Ton Anh Ngo, Vivek Sarkar, and Martin
Trapp. The Jikes Research Virtual Machine project: Building an
open-source research community. IBM Systems Journal, 44(2):
399–418, 2005.

[3] Eric Bruneton, Romain Langlet, and Thierry Coupaye. ASM: A code
manipulation tool to implement adaptable systems. In Adaptable and
Extensible Component Systems, Grenoble, France, November 2002.
12 pages.

[4] James Foucar. A Platform for Research into Object-Level Trace
Generation. PhD thesis, The University of New Mexico, 2006.

[5] Samuel Z. Guyer, Kathryn S. McKinley, and Daniel Frampton.
Free-Me: A static analysis for automatic individual object
reclamation. ACM SIGPLAN Notices, 41(6):364–375, 2006.

[6] Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss, Kathryn S.
McKinley, and Darko Stefanović. Error-free garbage collection
traces: How to cheat and not get caught. SIGMETRICS Perform.
Eval. Rev., 30:140–151, June 2002. ISSN 0163-5999. doi:
http://doi.acm.org/10.1145/511399.511352. URL
http://doi.acm.org/10.1145/511399.511352.

[7] Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss, Kathryn S.
McKinley, and Darko Stefanovic. Generating object lifetime traces
with Merlin. ACM Transactions on Programming Languages and
Systems, 28(3):476–516, 2006.

[8] Martin Hirzel, Amer Diwan, and Johannes Henkel. On the usefulness
of type and liveness accuracy for garbage collection and leak
detection. ACM Transactions on Programming Languages and
Systems (TOPLAS), 24(6):593–624, 2002.

[9] Martin Hirzel, Amer Diwan, and Matthew Hertz. Connectivity-based
garbage collection. In ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, pages 359–373, 2003. ISBN 1-58113-712-5.

[10] Hajime Inoue, Darko Stefanović, and Stephanie Forrest. On the
prediction of Java object lifetimes. IEEE Transactions on Computers,
55(7):880–892, 2006.

[11] Richard E. Jones and Chris Ryder. A study of Java object
demographics. In Proceedings of the 7th International Symposium on
Memory Management, pages 121–130. ACM, 2008.

[12] Jonathan M. Lambert and James F. Power. Platform independent
timing of Java virtual machine bytecode instructions. Electronic
Notes in Theoretical Computer Science, 220(3):97–113, 2008.

[13] Sun Microsystems. JVM Tool Interface, 2004.
http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html.

[14] Richard A. Uhlig and Trevor N. Mudge. Trace-driven memory
simulation: A survey. ACM Computing Surveys (CSUR), 29(2):
128–170, 1997.

118

