Introduction to Computer Science I

LAB 3
 Basic loops

This lab will require you to practice using iteration (a.k.a., while loop statements).

1 Factorials

Consider the factorial function:

$$
\operatorname{fact}(n)= \begin{cases}1 & \text { if } n=0 \\ n \times \operatorname{fact}(n-1) & \text { if } n>0\end{cases}
$$

This function forms a sequence, where the $0^{\text {th }}$ entry is 1 , and the $n^{\text {th }}$ entry is the product of all numbers from 1 to n. The sequence begins: $1,1,2,6,24,120,720, \ldots$

You will be writing code that works with this sequence. Let's see exactly what that will entail...

2 Getting started

In order to get started with this assignment, do the following:

1. Login: As always, connect with Remote Desktop to remus or romulus.
2. Open terminal: Right-click on the desktop (within Remote Desktop!) and use the dropdown menu that appears to open a Terminal window.
3. Make a directory: Create a new lab-3 directory with the mkdir command, and then change into that new directory with the co command.
4. Copy the initial source code: Take a copy of the initial source code, which you must complete, like so:
```
$ cp ~sfkaplan/public/COSC-111/lab-3/Factorial.java .
```

5. Open the source code for editing: Use emacs to open this new program's code.

3 Your assignment

Complete the source code provided in Factorial. java. Specifically, the comments in the code guide you write the following critical loops:

1. Get a valid input: Prompt the user to enter a number (which we'll call n) that is a nonnegative integer. If the user enters three invalid values, then the program should print a message that it is "giving up", and it should not move on to the following two steps.
2. Calculate the factorial: Via repeated multiplications, calculate n !. Use a long integer to calculate your answer (since factorial values quickly get big as n increases).
3. Find the maximum factorial: Even a long integer has a limited range. Any number larger than about 8 quintillion cannot be stored in such a variable. Remember that if you take the largest positive value that can be stored in a long integer and then add 1 to it, the value will wrap around into the negative numbers. Consequently, if we try increasing values for n, eventually we will find a value (let's call it $n_{\max }$) that yields the largest factorial number that can be correctly contained in a long integer variable-let's call that one $f_{\text {max }}$. Write a loop that calculates $n _m a x$ and f _max.

4 How to submit your work

Use the CS submission systems to submit your work, as usual. Recall that you may submit via a web browser or the command line (with the ${ }^{\sim}$ lamcgeoch/submit command).

This assignment is due on Thursday, Feb-18, 11:59 pm, before it becomes Friday, Feb-19.

