
INTRODUCTION TO COMPUTER SCIENCE I
LAB 5

Arrays and randomness
For this lab, you will practice using arrays in a number of different ways. You will also be

introduced to pseudo-random number generators, and the use of these unpredictable values in
your computations.

1 Getting started
Begin like so:

1. Login to remus or romulus.

2. Open a terminal to get a shell prompt.

3. Make a directory named lab-5 (using mkdir) and change into it (using cd).

4. Open a new source code file for editing (using emacs). The file should be named
ShuffleTest.java

2 Random numbers
For this assignment, you will need to use the following method that generates pseudo-random
numbers:

double v = Math.random();

This method, Math.random(), returns a value (here, v) such that 0.0 ≤ v < 1.0. Each time
this method is called, it will return a different value. These numbers have two characteristics:

1. They are uniformly distributed between 0.0 and not quite 1.0. That is, each value in that
range is equally likely to be the next value.

2. They are unpredictable. Knowing any number of the values that it previously returned does
not help you predict the next value.

For this method, the numbers only seem unpredictable. Since we do not know what code is
inside this method, we have no good or easy way to predict the next value. However, computers
are deterministic machines: given the exact same inputs and state, it will always produce the same
result. If we could see the source code of Math.random(), we could ourselves calculate the
next value before calling the method and seeing it.

Therefore, Math.random() produces numbers that only seem unpredictable, even though
those numbers are, in fact, perfectly predictable with knowledge of the algorithm that produces
them. That makes the sequence of numbers that this method produces pseudo-random, and not
truly random. This distinction will not matter for this lab, but we will discuss the issue later,
during lectures.

1

https://www.amherst.edu/~sfkaplan/courses/2016/spring/COSC-111/
https://www.amherst.edu/~sfkaplan/courses/2016/spring/COSC-111/assignments/lab-5.pdf


3 Your assignment
We seek to create a method that can randomly permute (that is, shuffle) the values in an array. To
reorder an array’s values, in a (seemingly) random way, the algorithm must obtain and use random
numbers. Your code can do so by using the Math.random() method described in Section 2.

It will be left to you how to make a method that shuffles an array’s contents. There are many
ways to do it, and you should not worry about speed or space. That is, if your algorithm is not fast,
then that should be acceptable (within reason); likewise, your algorithm may or may not create a
new array to contain the shuffled contents.

The following describes the program you must write, ShuffleTest, that will test whether
your shuffling method works well. The program should:

1. Ask the user for a number of repetitions—that is, the number of times the test described
below should be performed.

2. Initialize an array of 100 integers, in which running sums will be kept. Specifically, each
position will represent the sum of the values that have landed in that position number in each
shuffled array.

3. Repeat the following test for the user-requested number of repetitions:

(a) Create an array of 100 values. Each entry in the array should be initialized with its own
index value. That is, position [0] should contain the value 0, position [17] should
contain 17, and so on.

(b) Pass this array to a method that will shuffle its order.

(c) For each position i in the shuffled array, add its value to position i in the array of
running sums.

4. After performing the tests, print the contents of the sums array. That is, print, one per line,
the position number and the value in that position number, over the whole array, like so:

0 49672
1 49150
2 48998
3 50012
4 49527
...
99 49463

For a good shuffling algorithm, each value has an equal probability of being placed in each
position. Therefore, over a number of shuffling tests (say, 1,000), each sum in the sums array
should contain a number close to the average value of all of the shuffled values, multiplied by the
number of tests. That is, with values from 0 to 99 being shuffled, the mean of those values is
0+99
2

= 49.5. If we sum values whose average is that 49.5 over 1,000 iterations, we get 49.5 ×
1, 000 = 49, 500.

2



Therefore, if each of the sums in the 100 positions shown at the end of the program is near that
expected sum, then your shuffling code worked well. If there is a skew, with some positions having
higher numbers and others lower ones, then your algorithm had a tendency to place larger values in
the former positions and smaller values in the latter. In other words, an uneven set of sums implies
poor shuffling. Try to make your shuffling method work well.

4 How to submit your work
Use the CS submission systems to submit your work. Specifically, you will need to submit your
ShuffleTest.java file. You may use either of the following two methods, while connected
to remus or romulus, to use the submission system:

• Web-based: Visit the submission system web page.
• Command-line based: Use the ˜lamcgeoch/submit command at your shell prompt.

This assignment is due on Thursday, Mar-24, 11:59 pm, before it becomes Friday, Mar-25.

3

https://www.cs.amherst.edu/submit
https://www.cs.amherst.edu/submit

	Getting started
	Random numbers
	Your assignment
	How to submit your work

