
Introduction to Computer Science I

Spring 2016

Mid-term exam — Solutions

1. Question: Provide short answers (one to three sentences) to each of the fol-
lowing questions:

(a) What is the difference between passing/returning values and printing/inputting
(from the keyboard) values?

(b) When you write Java source code, for whom are you writing it? (That is,
who is your audience?)

(c) Why does Java have integer data types? Why not use floating point num-
bers (e.g., float and double data types) for everything numeric?

Answer:

(a) Values can be passed into and returned from a method that is called; these
are inputs into and outputs from one method to another method. Data is
printed to the screen or input from the keyboard as part of an interaction
with the user—an exchange of input and output with a human sitting at
the computer.

(b) One audience is the machine, in that the compiler will translate it into a
form that the computer can then carry out. The other audience is the set
of humans that may read the source code to discover how you chose to
solve a problem.

(c) Floating-point data types (e.g., float and double) can suffer from round-
ing errors. That is, each such value can be only so precise, and so any
rounded values represent inexact results. Integers are always exact, with
no rounding errors.

Discussion:

(a) Many of the descriptions provided were vague. Most identified that print-
ing/inputing involves the user, but the descriptions of passing/returning
were often muddled. People included assertions about the role of main()
(which has no special role here), as well as commentary about whether
values were saved or usable later (for some notion of later).

(b) A common error was to claim that the code was for the user. Typically,
a program’s user never sees the source code; the user interacts with the

1

program, and is therefore, at most, an indirect audience of the source code.

(c) Many people claimed that floating-point numbers took up more space,
were slower for the computer to use, and had a more limited range than
integers. These all are false assertions. The range for floating point num-
bers is larger, but it’s combination of range and accuracy is more complex.
They’re not slower—hardware for performing floating-point operations is
just as fast as for integer manipulation. And a float takes the same 32
bits as an int, while both double and long values take 64 bits. Besides,
the question wasn’t about efficiency!

2

2. Question: What is the output of the following code?

int x = -5;

if (x <= -1) {

x = -x;

}

if ((1 <= x) && (x <= 9)) {

x = x * 2;

} else if ((10 <= x) && (x <= 19)) {

x = x * 10;

} else {

x = x * 1000;

}

System.out.println(x);

Answer:

10

Discussion: Yes, the answer is awfully short, but it makes clear which path
through the code you believed the program would follow. The first conditional
statement (that tests x <= 1) is a standalone statement; whether that condition
is true or false will not affect whether the second condition ((1 <= x) && (x <= 9))
is evaluation, since it always will be. In this example, where x = -5, the first
condition is true and x is negated to become 5.
What follows is a chain of if-then-else statements. That second condition is
tested, and indeed, x is between 1 and 9. Consequently, x is doubled to become
10.
Because the following conditional statement is connected to the else of this
second condition, none of it will be used. That is, because x was between 1
and 9, then the third condition ((10 <= x) && (x <= 19)) is not tested, even
though x is, at that point, 10. So, x is neither multiplied by 10 nor 1,000. That
leaves the resulting, printed value, 10.
Most people got this one, but some got confused about the chain of events
described above.

3

3. Question: What is the output when ArrayPass is run?

public class ArrayPass {

public static void main (String[] args) {

int[] q = new int[15];

int i = 0;

while (i < q.length) {

q[i] = i * i;

i = i + 1;

}

i = 5;

moose(i, q);

System.out.println(i);

System.out.println(q[i]);

}

public static void moose (int i, int[] a) {

i = i + 1;

a[i] = a[i] * 2;

}

}

Answer:

5

25

Discussion: This question is all about knowing how data is passed into meth-
ods; specifically, it is important to remember that arrays are not themselves
passed, but rather pointers to them.
First, main() initializes an array (through the pointer q) such that each position
k contains the value k2. Then, in calling moose(), a copy of the value 5, from
main()’s variable i, is copied into the parameter i for moose(). That is, there
are two spaces, both named i, that are distinct and accessible only within the
method that declares each. Changes to moose()’s i do not affect the value
stored in main()’s i.
However, the pointer value stored in q is copied into the parameter a when the
call to moose() occurs. Consequently, changes to values in the array to which
both of those pointers lead will persist after moose() returns, and be “visible”
to main() through q.
That said, in this example, moose() will double the value at index 6. The value
at index 5 is unchanged (as is main()’s i itself). Consequently, 5 and 25 are
the output produced by main() at the end of this program.
Most mistakes began with the erroneous belief that i is modified by moose()

in a way that persists outside of it, leaving i = 6. For those who wrote 6 as

4

the first line of output, the corresponding second line, showing q[6], should
print 72. Specifically, it is q[6] that is doubled in the call to moose(), and that
change does persist after that call ends.

5

4. Question: Write a method named printRhombus that, when passed a size (in
this example, 5), prints the following rhombic pattern:

.....

.....

.....

.....

.....

Answer:

public static void printRhombus (int size) {

int row = 1;

while (row <= size) {

int spaces = size - row;

printSpaces(spaces);

printDots(size);

System.out.println();

row = row + 1;

}

}

public static void printSpaces (int n) {

int c = 1;

while (c <= n) {

System.out.print(" ");

c = c + 1;

}

}

public static void printDots (int n) {

int c = 1;

while (c <= n) {

System.out.print(".");

c = c + 1;

}

}

Discussion: This pattern is quite similar to the ones from Lab-4 and Project-
1. By figuring out how many spaces to print (before printing the same number
of dots/periods) on each row, you could loop through the rows of the pattern
and print the correct number of each in sequence.
I wrote my solution, above, using helper methods (printSpaces() and printDots()),
largely because that is how we’ve structured examples and solutions in our as-

6

signments. However, the loops within those helper methods could have been
placed directly into printRhombus(), in place of the calls to the helper methods
themselves. Either approach was acceptable for this question.
Most mistakes of significance involved a failure to structure the loops correctly.
Some put the dots-loop inside the spaces-loop (which cannot work), some forgot
to have an enclosing rows-loop, and many just botched the arithmetic relating
the pieces. For example, too often the math done to decrement the number of
leading spaces with each row was malformed, yielding no change in the number
of spaces at all.
Finally, far, far too often, the user would be prompted for a value (typically,
the size). The question clearly states that printRhombus() takes the size as a
parameter. Some wrote main() methods to handle the interaction with the user
on that front, and while that isn’t necessarily wrong, it is certainly unrelated
and superfluous.

7

5. (30 points) Write a method that compares two arrays of int to determine
whether their contents are identical. It must return true if the contents are
identical, and false otherwise. It’s signature should be:

public static boolean compare (int[] a, int[] b)

Answer:

public static boolean compare (int[] a, int[] b) {

if (a.length != b.length) {

return false;

}

int i = 0;

while (i < a.length) {

if (a[i] != b[i]) {

return false;

}

i = i + 1;

}

return true;

}

Discussion: Many people asked, during the exam, whether (a) the arrays had
to be created (no)), and (b) whether the arrays would have the same length
(not necessarily). Understand that this method is one of our “black boxes,”
in that we should assume that pointers to two arrays are being passed to the
method, and that we don’t know anything about how they were made nor their
lengths.
Luckily, many figured out that arrays of differing lengths tautologically could
not be identical. Thus, the first test it to compare the lengths and, if differing,
return false immediately. Remember that a return statement, no matter
where in a method it occurs, ends that method immediately.
Therefore, the loop that follows may assume equal lengths, and then compare
each pair of values in the two arrays. (Some also asked whether the order of
the values mattered. Yes. Arrays have an ordering; something in which the
ordering didn’t matter would be called a set.) Notice, in the loop, that we
need only find one pair of unequal values to determine that the arrays are not
identical, and thus return false. Moreover, notice that we cannot return true

until all of the pairs of values have been tested; to return true upon finding
just one equal pair is insufficient.

8

