
INTRODUCTION TO COMPUTER SCIENCE I
LAB 1

A First Program

1 Getting started
The following steps will get you started with this lab. You will be introduced to the programs and
tools that you will need to complete the lab and project assignment. Feel free to ask questions
about the details of getting rolling here.

1. Login to your workstation: Our lab is full of Windows desktop computers. These are run
by our Information Technology department, and you must begin by logging into them using
your college username and password.1 These workstations won’t do much themselves: they
will primarily be used to connect to different systems on which the real work will happen.

2. Login to a server: The computer systems that we will use for our projects
are romulus.amherst.edu or remus.amherst.edu, (henceforth, remus/romulus),
which are UNIX (Linux) systems. To use these systems, you must login to them from your
workstation using Remote Desktop, software that allows you to connect graphically to these
servers. To do so, follow Remote Desktop Connection instructions that describe not only
how to use this software on the Windows machines in Seeley Mudd 014, but also how to
install (if needed) and use this software on your own computer, whether Windows, Mac, or
Linux.

Once you have logged into remus/romulus, you will see the graphical interface for that
server, which looks very much like the desktop that your own computer presents. Right-click
anywhere in the empty part of the desktop (not on an icon), and a menu will pop up. In that
menu, select Open in Terminal. You will then see a terminal window within which there is a
shell—a prompt at which you can type commands to the system. The shell is the place from
which you will launch the program that allow you to edit your source code, to compile that
source code, and to execute (run) your programs.

3. Make a directory: When you first login and open a terminal window, you will be working
in your Desktop directory. However, we want to work in your home directory—the UNIX
equivalent of your My Documents folder. So first, change into your home directory, like so:

$ cd

Now in your home directory (represented by the tilde character at the prompt), you should
make a subdirectory (a folder) for your work for this lab by using the mkdir (make directory)
command (shown below). Once you do that, you can cd (change directory) into that new
folder. Using those commands looks like the following, where the dollar sign ($) is the
prompt—what the shell prints before stopping to wait for you to type a command:

1It is likely that you’ve already logged into a Windows workstation if you happen to be reading this document. Go
with it.

1

https://sfkaplan.people.amherst.edu/courses/2017/fall/COSC-111/
https://sfkaplan.people.amherst.edu/courses/2017/fall/COSC-111/assignments/lab-1.pdf
https://www.amherst.edu/offices/it/
http://en.wikipedia.org/wiki/UNIX
http://en.wikipedia.org/wiki/Linux
https://www.amherst.edu/offices/it/knowledge_base/network-wifi/Remote_Desktop_Connection


$ mkdir lab-1
$ cd lab-1

4. Get some starting source code: Use the following command to obtain a sample Java source
code file:2

$ wget -nv --trust-server-names goo.gl/USnSwQ

This command will generate some output to show you what it’s doing. To ensure that you
have copied the file into your lab-1 subdirectory, use the ls (list directory) command to
list the files in the current directory, noting that the character following the dash (-) is a
lowercase letter L, and not the numeral 1. The -l part of the command indicates that you
want to list the directory using the long format:

$ ls -l

You should see an output that looks something like this:

total 4
-rw-r--r-- 1 sfkaplan sfkaplan 187 Aug 9 22:18 Messages.java

You have now set yourself up to work with some Java source code. Move onto the next section.

2 Your assignment
Perform the following steps in order to see, use, and change your code:

1. Examine the source code: Run Emacs, a programming text editor, to examine the
Messages.java file. In the following command, be sure to include the trailing ampersand
(&), causing the text editor to run in the background—that is, to run while allowing you to
enter more commands:

$ emacs Messages.java &

A new window will open, showing you a handful of lines of Java code (along with code
comments—lines that begin with two forward slashes (//)—that provide some human doc-
umentation and commentary. This code shows a program named Messages that will start
on the complex line beginning public static void main (String[] args),
carry out two commands to print messages, and then end. For now, examine the code, but
leave it as-is.

ASIDE: Emacs is a complex program that can do a great deal. To learn more about how to
use it, you should read this documentation/tutorial on using Emacs. Also note that you are
welcome to use a different editor or an IDE; so long as your submitted code runs correctly,
I don’t care what tools you used to write it.3

2If you are working on your own computer, and don’t use the command-line like this on it, then simply copy-and-
paste the link into your browser to download the code.

3Eclipse and IntelliJ are common. If you don’t know what an IDE is, then don’t worry about it, not even a little.

2

http://en.wikipedia.org/wiki/Text_editor
https://www.amherst.edu/offices/it/knowledge_base/academic-resources/unix_servers/emacs_text_editor


2. Compile the code: The source code must be translated it into a form that the computer can
execute. Leaving your Emacs window open, click over to your terminal window again. In it,
use the following command to compile—that is, translate into machine code—your source
code:

$ javac Messages.java

In this case, no news is good news. That is, if the computer simply presents the shell prompt
to you after you issue this command, then the compilation succeeded. The compiler—the
javac program—will print messages into your terminal window only if it was unable to
translate your program. Given that you’ve changed nothing from the original code, it should
compile without error.

3. Execute your program: Once you have successfully compiled your program, it is time to
run it and see what happens. Go to your shell window and issue this command:

$ java Messages

The messages that you saw in the code should be printed into your terminal window.

4. Change something: Alter your program slightly, and then test that your alteration did what
you expected. Specifically:

(a) Edit: Go back to your Emacs window. Add your own print statement or two, using
the existing print statements as templates. Be sure to save your changed source code.

(b) Compile: Issue the javac command to your shell, just like you did above. If there
are error messages, you will need to return to Emacs, fix whatever is incorrect, save the
changed code, and try to compile with javac again. Repeat until your code compiles
with no error messages.

(c) Execute: Issue the java command to your shell, just like you did above. Your pro-
gram should run, this time printing the additional message that you added into the code.

Ta-da! You’ve just done some programming. You have also begun to use the tools on which your
work will depend in this course: remote desktop, remus/romulus, the shell, the Emacs text editor,
the javac compiler, and the java executor.

3



3 How to submit your work
Submit your modified Messages.java file. You may use either of the following two methods
to use the CS submission system:

• Web-based: Visit the submission system web page. If you did your work on your own com-
puter, open this link in your computer’s browser; if you did your work on remus/romulus,
then open this link in a browser opened within remote desktop.

• Command-line based: Use the cssubmit command at your shell prompt, as below, fol-
lowing the prompts it presents about which class and assignment you are submitting:4

$ cssubmit Messages.java

This assignment is due on Thursday, Sep-14, 11:59 pm.

4This command works only while connected to remus/romulus.

4

https://www.cs.amherst.edu/submit

	Getting started
	Your assignment
	How to submit your work

