
INTRODUCTION TO COMPUTER SCIENCE I
LAB 7

Searching arrays

1 Seeing the future
You walk into Frost Library to return a book.1 You decide to look up Knuth’s The Art of Computer
Programming. Seeing that it is down in C-level, you descend the stairs. Strangely, though, when
you get to C-level, you notice, in the semi-darkness, that the stairs continue down another level.
You have never seen these stairs before, thinking that C-level was the bottom of this architectural
eyesore.2

Feeling adventurous, you descend to the little-known and, as it turns out, magical D-level. In
it, you find stacks of periodicals—newspapers, magazines, etc. You approach a stack of Wall
Street Journals, and pick up the one on the top. It’s date is October 30, 2017. “But . . . that’s next
Monday!” you exclaim. Digging through the stack, each Journal is marked as being yet another
day into the future. Disbelieving, you write down the titles of a couple of articles: Kim Kardashian
Announces 2018 Senate Run, and Kim Jong Un Steps Down, Opens Yoga Studio. There’s even a
sports article: Dodgers Lead 3-2 After 27 Inning Marathon.

Sunday comes, and you watch the Dodgers play the Astros play until 4 am, winning after 27
innings. The game is exactly as described in the article that you saw on D-level. You wake up
on Monday morning, run to Hastings, and buy a copy of the WSJ—and there are those headlines
that you copied while in D-level, verbatim. Wow. You run back to Frost, sprinting down the stairs
into D-level again. Monday’s paper is there, and so is Tuesday’s, Wednesday’s, et cetera. Even
more oddly, you seem to be the only person in the room. It’s not clear anyone else sees it; perhaps
nobody else has ever seen it.

Sensing opportunity, you grab the next few days of the journal, and you look at the stock prices.3

Wow. If these newspapers are what they seem to be, you could make a killing! So, you grab your
laptop out of your backpack, and you pick a stock—who is this Alphabet company?—and start
writing down its prices for tomorrow, the next day, and so on. After many hours of labor, you have
a lengthy list of Alphabet share prices, day by day, going years into the future.

Now you realize that you need to take advantage of this magical information in order to make
as much money as possible. Good thing you’re taking COSC 111! Otherwise, you would have
trouble figuring out how to calculate, from this list of numbers, on which day you should buy as
much Alphabet stock as you can afford, and on which later day you should sell it.4 You settle in to
write a program that will read that list of stock prices, and after a few seconds of calculating, print
out the day to buy, the day to sell, and the factor increase in your money.5

1You know, the old codex things made of stacked and bound paper.
2Not that I have an opinion on the matter.
3Yes, you’re that shallow.
4In the WSJ from Oct 27, 2017, the Securities and Exchange Commissions ban short selling, so you know that you

must buy first and sell later.
5That is, if the stock price increases from $25 per share on your buy-day to $125 per share on your sell-day, then

your increase is a factor of 125
25 = 5.

1

https://sfkaplan.people.amherst.edu/courses/2017/fall/COSC-111/
https://sfkaplan.people.amherst.edu/courses/2017/fall/COSC-111/assignments/lab-7.pdf
http://goo.gl/TIqbj
http://goo.gl/TIqbj
http://en.wikipedia.org/wiki/Codex
http://en.wikipedia.org/wiki/Short_(finance)

2 What you must do
Create a directory for this project, change into it, and grab source code:

[sfkaplan@remus ˜]$ mkdir lab-7
[sfkaplan@remus ˜/lab-7]$ cd lab-7
[sfkaplan@remus ˜/lab-7]$ wget -nv -i https://goo.gl/1TMELq

Open the Java source code file, PickEm.java, with Emacs. You will see, as usual, that it
contains a fully-formed main(), which calls on a methods to generate a random array of “stock
prices” (floating point numbers) of some given length (on the command line). It then calls on the
method findBuySell(), passing it the array of stock prices. This method is expected to return,
as a two-element int array:

• [0] The day number on which one ideally should buy the stock, and

• [1] The day number on which one should sell it.

Therefore, this method should always return an array of length 2, where the value at index 0
contains the buy-day, and the value at index 1 contains the sell-day.

2.1 A solution
Write the findBuySell() method. Specifically, employ a brute force algorithm that considers
every possible buy/sell day pairings (remembering that the buy-day must precede the sell-day),
and chooses the best. Once you write such a method, test it. Add code to print the array of prices,
and then run the program with small but increasing numbers of days (which you get to specify on
the command line). For example:

[sfkaplan@remus ˜/lab-7]$ java PickEm 1
Day = 0, price = 811.3915355625351
Buy on 0 at 811.3915355625351
Sell on 0 at 811.3915355625351
Factor profit = 1.0

[sfkaplan@remus ˜/lab-7]$ java PickEm 5
Day = 0, price = 811.3915355625351
Day = 1, price = 27.67945220153589
Day = 2, price = 359.17924706247993
Day = 3, price = 149.29240060832484
Day = 4, price = 814.3190563057799
Buy on 1 at 27.67945220153589
Sell on 4 at 814.3190563057799
Factor profit = 29.419623277826087

2

You likely want to test your solution on as lengthy a list of prices as you can examine by hand.
Notice that, if you choose a sufficiently high number of days, then the output will be too long
to view in your terminal window. So, you can employ shell redirection, sending the output that
normally appears within the terminal window into a file instead. Having done so, you can then
open the file with Emacs and examine the whole output, like so:

[sfkaplan@remus ˜/lab-7]$ java PickEm 500 >& output
[sfkaplan@remus ˜/lab-7]$ emacs output &

Once you have determined that your program is working correctly, then remove the debugging
code that prints the array of prices, and run the program on a large input. Specifically, run your
program with 250, 000 days:

[sfkaplan@remus ˜/lab-7]$ java PickEm 250000
If a sane output results (although it is hard to know if it is correct), then you are done. I will run

your program with this input size to test it.

3 Submitting your work
Submit your PickEm.java file with the CS submission system, using one of the two methods:

• Web-based: Visit the submission system web page.
• Command-line based: Use the cssubmit command at your shell prompt.

This assignment is due on Thursday, Nov-02, 11:59 pm.

3

https://www.cs.amherst.edu/submit

	Seeing the future
	What you must do
	A solution

	Submitting your work

