
INTRODUCTION TO COMPUTER SCIENCE I
LAB 9
Magic!

1 Magic Squares
A magic square is an n×n grid filled with the numbers 1, 2, . . . , n2 such that each number appears
exactly once, and the sum of every row, column, and main diagonal1 in the grid adds up to the
same value. For example, the 3× 3 grid. . .

4 9 2
3 5 7
8 1 6

. . . is a magic square because every row, column, and main diagonal sums up to 15.

Magic squares have been around for a long time. The first known recordings of magic squares date
back to the 7th century BC. The particular magic square shown above is called the Lo Shu square.
An old Chinese legend says that during a great flood of the Lo River, a turtle walked out of the
river with a shell pattern depicting the Lo Shu. This pattern helped the people determine the right
sacrifice to make to the river gods, thereby ending the flood.

Your work in this lab probably won’t stop any floods (but who knows?), but by the end of the lab
you will be able to generate magic squares. It is not possible to construct a magic square of size
n = 2, but all other sizes are possible. There’s a nice, straightforward algorithm for constructing
magic squares of odd size (see Section 2.3 below), so that will be our focus.

2 Your Job

2.1 Setup
Make a new directory for this lab, change into that directory, and copy a java file:

[sfkaplan@remus ˜]$ mkdir lab-9
[sfkaplan@remus ˜]$ cd lab-9
[sfkaplan@remus ˜/lab-9]$ wget -nv -i https://goo.gl/YPRj7y

The file MagicSquare.java currently contains a main() method that reads in an odd number
from the keyboard and calls the (not yet written) createMagicSquare() method. There is
also a method called print2D() that prints a 2-dimensional array. You can use this method to
help test the methods you will write.

1The main diagonals of a grid are the two diagonals that both start and end at corners.
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https://sfkaplan.people.amherst.edu/courses/2017/fall/COSC-111/
https://sfkaplan.people.amherst.edu/courses/2017/fall/COSC-111/assignments/lab-9.pdf
https://en.wikipedia.org/wiki/Magic_square


2.2 Checking if a square is magic
Your first job is to fill in the checkSquare()method. This method takes as input a 2-dimensional
array, and returns a boolean. The method should return true if the array is a magic square (i.e.,
all rows, columns, and main diagonals add up to the same value), and it should return false if
the array is not a magic square.

2.3 Generating magic squares
Your second job is to fill in the createMagicSquare() method. This method takes as input
an int representing the desired size of the square (you can assume that the input will be odd), and
should return an int[][] storing the magic square that you generate and fill in.

Here is an algorithm to fill in a magic square of odd size n:

1. Start by putting the number 1 in the middle column of the top row.

2. Move up 1 and to the right 1 from the last position you filled. If that position already has a
number written in it, move down 1 from the last position you filled instead. If you run over
the edge of the square, “wrap around” to the other side. Write the next number into this new
position.

3. Repeat step 2 until you have filled in all numbers from 2 to n2.

For example, to fill a 3× 3 magic square, the sequence of steps would be:

Step 1: Step 2: Step 3: Step 4: Step 5:
1 1

2

1
3

2

1
3
4 2

1
3 5
4 2

Step 6: Step 7: Step 8: Step 9:
1 6

3 5
4 2

1 6
3 5 7
4 2

8 1 6
3 5 7
4 2

8 1 6
3 5 7
4 9 2

3 Submit your work
Submit your modified MagicSquare.java using either the submission web site or the cssubmit
command.

This assignment is due on Thursday, November 30 (after Thanksgiving break), 11:59 pm.

2


	Magic Squares
	Your Job
	Setup
	Checking if a square is magic
	Generating magic squares

	Submit your work

