
COMPUTER SYSTEMS

PROJECT 0
Interposing a simple allocator

1 Library functions and interposition
We will be creating our own library to contain our compiled allocator code. Specifically, we will
define the following standard allocator functions:1

• void* malloc (size_t size)
Allocate a block of at least size bytes and return a pointer to it.

• void free (void* ptr)
Deallocate the block at ptr.

• void* calloc (size_t nmemb, size_t size_each)
Allocate and clear a block of nmemb items of size_each bytes per item. That is, allocate
and zero the bytes of nmemb * size_each bytes.

• void* realloc (void* ptr, size_t size)
Change the size of the block at ptr to be size bytes in length (instead of whatever it was).
Return a pointer to the newly resized block (which may be in the same location as the old
one, or which may have been moved to a new location and the data from the old block copied
into the new one).

These are standard functions, and the standard C library (a.k.a., libc) contains them. We would
like to make programs that we run use our version of these functions instead of the ones in libc.
That is, we would like to interpose our functions between the program and the libc functions.

We will see how these functions can be written, and how to interpose them when running a
program.

2 A simple starter program
In order to work with C code and make it do what we want it to do, we are going to have to become
more familiar with some standard C programming tools.

2.1 The compiler
The C compiler that we will use is gcc, the GNU Compiler Collection (or, once upon a time,
the GNU C Compiler).2 To see how this compiler works, we will start with a simple, example C
program.

1The definitions of these functions given here are not rigorously complete. For a fuller definition of each, you
should read its manual page. That is, at the command-line, use the man command to see the documentation of that
funcion, e.g., $ man malloc will show a page of technical description of that function.

2What’s GNU? GNU’s Not UNIX. Welcome to the world of recursive acronyms.

1

https://sfkaplan.people.amherst.edu/courses/2017/fall/COSC-171/
https://sfkaplan.people.amherst.edu/courses/2017/fall/COSC-171/assignments/project-0.pdf
https://gcc.gnu.org
https://gnu.org


The starter program: Grab the source code you will need for this part of the project (as well
as later parts):

$ wget -nv -i https://goo.gl/hwL8eV

We will begin with the program, starter.c, which is a simple, starter3 program to monkey
around with. To whit, open that source code file with the editor of your choice. Then, having seen
it, try compiling it, like so:

$ gcc -o starter starter.c

Assuming a successful compilation—no news is good news—then try running the program:

$ ./starter 13

Ta da! You’ve compiled and run a simple C program. Toy with it to see how it works, change
things around, etc.

2.2 The debugger
One of the benefits of C is the easy availability of a source level debugger, this case, gdb. To try
it on your starter program, first recompile with debugging symbols included:

$ gcc -g -o starter starter.c

Now, start the debugger. You can do so either at the command line. . .

$ gdb ./starter

. . . or, if you are using Emacs4, you can start gdb within the editor by typing:5

M-x gdb

. . . which will be followed with a prompt to run the debugger like so:

gdb --annotate=3 starter+.

From witin gdb, first set a breakpoint at the main() function:

(gdb) b main

Now run the program:

(gdb) run 13

You will see the program stop at the first line of main(), waiting for instruction. You should
try the help command, as well as Use The Google to find gdb documentation and tutorials.

3Duh.
4Which you should. It’s really handy for this kind of stuff.
5Note that M-x is Emacsish for alt-x or, for some computers, ESC x, where the ESC and the x are two separate

keystrokes.

2



3 Your assignment

3.1 The allocator source code
Open, with your favorite editor, pb-alloc.c. There’s plenty there, but most of all, there are
the standard allocator functions described in Section 1. Additionally, there is a main() function
at the bottom of the source code. For testing purposes, we will first compile this allocator as a
standalone program, allowing for easier debugging with gdb. Try compiling it and running it:

$ gcc --std=gnu99 -g -o pb-alloc pb-alloc.c
$ ./pb-alloc

You should feel free to change main() to more heavily test the allocator’s functions.

3.2 Compiling a shared library
Next, we want to make pb-alloc work on other programs. To do so, we need to compile a
shared library, like so:

$ gcc -std=gnu99 -g -fPIC -shared -DPB_NO_MAIN -o libpb.so pb-alloc.c

There’s a lot of goop there. -fPIC -shared tells the compiler that we want a position inde-
pendent shared library. The -DPB_NO_MAIN defines the symbol PB_NO_MAIN, which signals
the compiler to skip over the main() function when compiling (since libraries don’t have their
own main()).

3.3 Interposing the shared library
Now for the moment of truth. We can tell the shell to load our library first, thus making all uses of
the allocator functions6 link to our versions:

$ setenv LD_PRELOAD ./libpb.so

Now, any command that creates a new process will be loaded and linked with our library:

$ ls
pb!
pb-alloc.c pb-alloc libpb.so starter starter.c

3.4 What you must do
Document it. Wrap your head around the pb-alloc.c code, and write clear and complete
documentation about how the allocator works overall, and how each function specifically does its
thing. Expect to need to look things up and to ask questions to figure out all of the details.

6Not quite all. Internal calls from within the standard C library to its own allocator functions are already linked,
and cannot be intercepted (easily).

3



4 Submitting your work
Submit your documentation (which can be either a commented pb-malloc.c or a separate doc-
ument entirely) with the CS submission system, using one of the two methods:

• Web-based: Visit the submission system web page.
• Command-line based: Use the cssubmit command at the shell prompt on remus/romulus.

This assignment is due on Sunday, Sep-24, 11:59 pm.

4

https://www.cs.amherst.edu/submit

	Library functions and interposition
	A simple starter program
	The compiler
	The debugger

	Your assignment
	The allocator source code
	Compiling a shared library
	Interposing the shared library
	What you must do

	Submitting your work

