
COMPUTER SYSTEMS

PROJECT 1
Allocator, Mark II: Reclaiming Free Space

1 Enhancing our allocator

1.1 Overview
Begin with the pointer-bumping allocator of Project 0. Here, allocation was performed in a first-fit,
address-ordered manner with no reclamation of free space. It was simple, but it worked.

For this assignment, we want to alter that allocator. First, it must reclaim free space. Second,
it must allocate from the collection of reclaimed blocks preferentially. That is, if the allocator
can fulfill a request by using a block that was previously made free, then it must do so. Pointer
bumping allocation should only be employed when no reclaimed blocks can satisfy the request.

1.2 A suggested design
To make these changes, free() must track all blocks passed to it, and malloc() must find and
use those blocks. One approach that would be straightforward is:

• Keep a free list of reclaimed blocks. free() inserts blocks into this list; malloc()
traverses the list and potentially removes a block from it.

• Implement this list as a linked list, where the nodes of the list are stored within the free
blocks themselves.

• Have malloc() employ a first-fit approach to satisfying requests from the free list.

• Do not have malloc() split free blocks. That is, if a request of size n can be satistfied with
a free block of size m, where n < m, then malloc() should return the enter m-byte block.
It should not divide the block into an n-byte block for the request, and then an (m−n)-byte
block that remains in the free list.

• Do not attempt to coalesce free blocks.

1

https://sfkaplan.people.amherst.edu/courses/2017/fall/COSC-171/
https://sfkaplan.people.amherst.edu/courses/2017/fall/COSC-171/assignments/project-1.pdf
https://sfkaplan.people.amherst.edu/courses/2017/fall/COSC-171/assignments/project-0.pdf


1.3 How to test it
Remember that you can compile pb-alloc.c such that it is a standalone program that you can
not only run, but run inside of GDB.1 Specifically, compile it like so:

$ gcc --std=gnu99 -ggdb -o pb-alloc pb-alloc.c

Given this ability, you should write main() such that it calls malloc() and free() with
a fixed sequence of requests that should exercise the various parts of your allocator. I leave it to
you to determine what sequences to use. I recommend only that you progress incrementally. The
first attempt should allocate, say, 16 bytees. That’s it. Then it should allocate and then free that
16 bytes. Next, allocate, free, and allocate 16 bytes. The second allocation should yield the same
block that the first allocation did, reusing that block.

Finally, use the Google. How do you know if the same block was used? You could print the
pointers returned by malloc() and see if they’re the same! How do you print pointers in C? I
repeat: use the Google.

2 How to submit your work
Submit your new, enhanced pb-alloc.c file. You may use either of the following two methods
to use the CS submission system:

• Web-based: Visit the submission system web page.
• Command-line based: Use the cssubmit command at the shell prompt on remus/romulus.

This assignment is due on Sunday, Oct-15, 11:59 pm.

1Some have been resistent to get familiar with GDB. Get over it. Go dig up documentation and tutorials, and learn
to use it.

2

https://www.cs.amherst.edu/submit

	Enhancing our allocator
	Overview
	A suggested design
	How to test it

	How to submit your work

